THE UNIVERSITY OF MANITOBA

SEASONAL CHANGES IN BEACH MORPHOLOGY,

GRAND BEACH, MANITOBA

by

A. BADERL

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF ARTS

DEPARTMENT OF GEOGRAPHY

WINNIPEG, MANITOBA

FALL, 1977

SEASONAL CHANGES IN BEACH MORPHOLOGY,

GRAND BEACH, MANITOBA

ΒY

ALFONS BADERL

A dissertation submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

MASTER OF ARTS

© 1977

Permission has been granted to the LIBRARY OF THE UNIVER-SITY OF MANITOBA to lend or sell copies of this dissertation, to the NATIONAL LIBRARY OF CANADA to microfilm this dissertation and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this dissertation.

The author reserves other publication rights, and neither the dissertation nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

ACKNOWLEDGEMENTS

The writer is indebted to Professor L. P. Stene, who first proposed this topic, and under whose supervision this thesis was prepared. His guidance and assistance during the study is greatly appreciated.

Dr. J. A. Richtik, Head of the Department of Geography at the University of Winnipeg is thanked for the extensive use of laboratory facilities.

For additional guidance and many helpful suggestions the writer wishes to thank Dr. A. R. Lockery.

Sincere thanks are also expressed to Mr. T. Ball, lecturer, at the University of Winnipeg, who was always prepared to help and share his knowledge.

i

TABLE OF CONTENTS

		Page
CHAPTER I		
	Introduction	l
	Area of Research	2
	Lake Winnipeg	5
	Climate	15
	Regional Geology and Physiography	15
	Literature Review	20

CHAPTER II

Methodology	25
Fieldwork	25
Laboratory Work	27

CHAPTER III

Results of Field and Laboratory Study	29
Data Presentation	29
Composition of Sediments	29

CHAPTER IV

•

Interpretation and Discussion of	
Results	51
Introduction Profiles	51

ii

Seasonal Changes in Morphology	52			
North Beach				
South Beach				
Introduction - Grain Size Parameters				
Grain Size Parameters	66			
North Beach				
South Beach				

CHAPTER V

Concl	lusions	74
BIBLIOGRAPHY		87
APPENDIX		93
A. F	Review of Grain Size Parameters as per Computer Program	93
B. F	Raw Data	98
с. с	Graphical Parameters	109
D. (Computer Program	118

iii

LIST OF ILLUSTRATIONS

Figure		Page
1.	Model Depicting Dynamic Equilibrium of a Beach	3
2.	Map of Manitoba	4
3.	Map of Lake Winnipeg	6
4.	Map of Drainage Basin of Lake Winnipeg.	7
5a - 5c	Lake Level, Victoria Beach, 1973-1975	9-11
6.	Map of Grand Beach Area, Sample Area	18
7.	Photograph Looking Northeast Depicting North Beach	19
8.	Photograph Looking Southwest Depicting South Beach	19
9.	Map Showing Layout of Grid System	26
10a - 10c	Map of Elevations of North Beach, May, August, November	30
lla - llc	Map of Elevations of South Beach, May, August, November	31
12a - 12f	Profile of North Beach	32 - 34
13a - 13f	Profiles of South Beach	35-37
14a - 14e	Cumulative Curves of Selected Beach Sands, North Beach	39-43
15a - 15e	Cumulative Curves of Selected Beach Sands, South Beach	44-48
16.	Photograph of Grain Size in Horizontal Plane	50
17.	Photograph of Grain Size in Vertical Plane	50

iv

18.	Photograph of Accumulation of Debris, May, North Beach	53
19.	Photograph Showing Lack of Debris, November, North Beach	53
20.	Photograph of Berm and Crescent Shaped Shoreline, North Beach, May	54
21.	Photograph of Landward Movement of North Beach	56
22.	Photograph of Column 6 of North Beach, August	56
23.	Photograph of New Shoreline North Beach, November	58
24.	Photograph of Baylets, North Beach, November	58
25.	Photograph of South Beach, May	59
26.	Photograph of South Beach, November	59
27.	Photograph of Debris and Berm, May, South Beach	60
28.	Plot of Area of Beach Fluctuating with Water Level, North Beach	63
29.	Plot of Area of Beach Fluctuating with Water Level, South Beach	64
30a - 30f	Plot of Mean Size Against Distance From Baseline, North Beach	77-78
31a - 31f	Plot of Mean Size Against Distance From Baseline, South Beach	79-80
32a - 32e	Plot of Mean Size Against Standard Deviation, North Beach	81-82
33a - 33e	Plot of Mean Size Against Standard Deviation, South Beach	83-84

v

LIST OF TABLES

Table		Page
la - lc	Daily Maximum Wind Velocities and Directions, 1973,1974,1975	12-14
2.	Annual Precipitation for 1973, 1974,1975	16
3.	Volumetric Changes of Sand	38
4.	Grain Size Data as Obtained from Sieve Analyses	98-108
5.	Grain Size Parameters According to Columns and Rows	109-117

l

vi

Chapter I

INTRODUCTION

A beach is one of the most dynamic and variable landforms of a coastline. It is an accumulation of non-cohesive material which responds to various energy regimes (King, 1972).

Krumbein and Slack (1956) divide a beach into various zones; the backshore, foreshore, near shore bottom, and the dune belt zone. King's (1972) morphologic division is very similar, excluding only the dune belt.

The backshore is defined as a shore zone, or belt, which seldom experiences wave activity, and only during storms or periods of unusual wave reach does the backshore become inundated.

The foreshore, or swash limit, is defined as the zone of a beach which is alternately covered with water and exposed to the air.

The offshore zone (King, 1972), or near shore bottom (Krumbein 1956) is that section of the water-land interface which is completely submerged and extends to a point offshore where little or no sediment transport occurs.

A beach may be considered as a geometric element produced by the energy and material transfers between the offshore and backshore. A beach environment, therefore, represents an

open system involving energy, water and sediment. Associated with this system are the open system lateral transfers with longshore and littoral drifts (Figure 1). Limnic beaches exposed to these variables may be considered as having a seasonal dynamic equilibrium.

Researchers have postulated and examined processes occuring on oceanic coasts. Most of the results associated erosion with winter or high energy waves which are prevalent during the winter season. Dubois (1972) noted the seasonal variation in morphology on limnic beaches and directed his research to the Lake Michigan area. The results show that the beach retrograded from spring to summer concomitantly with the rise in lake level, and prograded from summer to winter with decreasing water levels.

The objective of this thesis is to investigate the seasonal changes of a limnic beach, including changes in profiles and grain size parameters.

Area of Research

The Grand Beach area was chosen for its accessibility. It is located on the east shore of Lake Winnipeg, approximately fifty miles northeast of Winnipeg (Figure 2). The East Beach of Grand Beach was selected as the sample site as it can be divided into two similar beach areas separated by vegetation and sand dunes. These two areas appear to

MODEL DEPICTING DYNAMIC EQUILIBRIUM OF A BEACH

experience the same natural limnic processes. The East Beach also does not have the heavy influx of summer visitors which populate the other areas of Grand Beach.

Lake Winnipeg

Lake Winnipeg is a large fresh water body located in the Manitoba lowlands. Its boundaries are latitude 50° 20' and 53° 50' North, and longitude 96° 20' and 99° 15' West. It has a maximum length of 250 miles and a variable width of 25 to 70 miles creating a surface area of approximately 9,430 square miles.

The lake can actually be viewed as two bodies of water, divided into a northern and a southern section separated by narrows and several large islands. The northern part has the Saskatchewan River as the largest contributor. The southern part is approximately 55 miles long and from 20 to 30 miles in width (Figure 3). The Red River, Winnipeg River and Assiniboine River are the main sources of influx of water into this part of the lake.

The total drainage basin for Lake Winnipeg has an area of 380,000 square miles (Lake Winnipeg, Churchill and Nelson Rivers Study Board 1971-75) including portions of Alberta, Saskatchewan, Manitoba, Ontario, North Dakota and Minnesota. Lake Winnipeg is discharged by the Nelson River flowing northward into Hudson Bay (Figure 4).

grl 77

A brief examination of water levels of Lake Winnipeg (Figures 5a-5c) reveals a cyclic seasonal fluctuation. Water levels usually rise from spring breakup to a maximum in summer and then decrease to a minimum during the winter months.

Lunar or solar tidal forces do not significantly affect lake levels because of the Lake's relatively small size (Ball, 1972). In addition to the seasonal increase in water volume, wind set-up and waves are other factors influencing lake level.

Set-ups are created by either strong northerly or strong southerly winds. Daily maximum wind velocities and directions are listed on Tables 1a, 1b, 1c. A daily comparison of lake levels and peak wind velocities suggests a positive correlation although frequently a lag of several hours must be considered (Einarsson and Lowe, 1968). As the open water season progresses the frequency of set-ups increases. The probability of a set-up producing a one foot rise in lake level doubles from 5% in June to 10% in October (Lake Winnipeq, Churchill and Nelson River Study Board 1971-75).

During 1966, Lake Winnipeg experienced a high water level some four feet above the average which is 713.22 feet above mean sea level. No causes for this phenomenon were given (Province of Manitoba Water Bulletin May 1967).

. <u>1973</u>

ഗ

Figure 5b

1975

: :

Same.

سز

١.

TABLE 1a - WIND VELOCITIES

	MA	Y 1973		AUGUST 1973			NOV	NOVEMBER 1973		
	Prev.	Mean	Max.	Prev.	Mean	Max.	Prev.	Mean	Max.	
Day	Dir.	Speed	Vel.	Dir.	Speed	Vel.	Dir.	Speed	Vel.	
٦	27	11 C	10	C FI	6 2		NTNT 17	10 0	10	
1 2		10 0	10	2C CCF	5.0	11 11	ININW	12.5	14	
2		10.0	10	225	1 1	0 TT	LNYY NTM	11 0	15	
2	NNE	5.6	10	TATNUAT	4.4	13	LNVV	10 3	13	
4 5	NNE	0.6	17	CIT	1.0	- - -	LNVV TATNITAT	10.5	15	
5	LOL	9.0 0 0	エノ ココ	5VL ENTE	4.2	12	VATUAL	LU.4 6 1	12	
7	WSW	0.J 7 /	11 11	ENE	0.0 1 E	10	CTTT CTT	10.0	16	
0	DW	/•4 5 2	о ТТ	201 217	4.5	13	ы ТVС Ш	13.6	17	
0	LOL	J.J	ש ז ב	UVC TVC	11 0	10	VV TAT	Α Λ Τ 3. 0	17	
10	NINE	9.0 11 6	17	CUT	7 1	12	N C	10 0	17	
11	ININ E.	11.0	15	UV C M	1 9	12	5 5177	7 0	12	
12	CIT	10 7	16	CIVI.	4.5	10		9.0	18	
12		12 0	18	Ц V С Т Т С Т	4.5	a	E ININA	1/ 2	23	
1/	MACIN	77	17	SVT.		10	NE	96	16	
15	NINIM	14 4	25	SSM	5.0	8	ENE	8.7	14	
16	NTA	10 3	19	SVT.	2.6	6	SE	. 8.3	15	
17	S	8.3	14	ESE	4.5	7	SE	9.6	15	
18	NW	8.5	14	SE	6.8	17	W	7.3	12	
19	NE	6.2	9	NW	10.2	18	NNW	5.0	8	
20	SVT.	6.5	11	W	3.8	6	NW	7.1	11	
21	E	9.4	13	SSE	4.3	9	N	12.5	16	
22	ESE	8.7	17	SVL	4.2	11	WSW	11.0	16	
23	NNE	5.9	13	ESE	4.3	8	WSW	8.0	13	
24	NNE	12.3	16	SSE	10.2	15	ENE	4.6	9	
25	NE	13.0	20	SVL	9.1	16	S	8.4	14	
26	ENE	5.6	11	WSW	5.8	10	SE	8.8	13	
27	N	7.1	13	SVL	7.5	15	WSW	10.2	16	
28	NNE	10.2	13	W	10.3	28	WNW	8.3	12	
29	SVL	6.0	14	WSW	7.2	13	WSW	10.7	16	
30	NNE	6.3	14	ESE	7.5	12	NW	7.5	18	
31	NNE	7.5	12	SVL	11.0	18				

~

TABLE 1b - WIND VELOCITIES

MAY	٦	9	7	4
1 14 1 1	-	~		<u> </u>

AUGUST 1974

NOVEMBER 1974

	Prev.	Mean	Max.	Prev.	Mean	Max.	Prev.	Mean	Max
Day	Dir.	Speed	Vel.	Dir.	Speed	Vel.	Dir.	Speed	Vel.
l	ESE	8.8	16	NNE	9.0	16	NE	14.0	21
2	NW	10.5	18	NNE	10.4	16	NW	7.6	10
3	SVL	4.9	13	SVL	5.3	8	NW	6.3	12
4	SSE	8.9	18	SVL	4.7	7	SSW	6.3	10
5	SVL	7.5	12	ESE	5.0	9	SSW	12.8	16
6	ESE	5.1	11	SVL	7.9	12	SSW	13.2	16
7	EVE	6.0	11	SSE	9.6	13	SSW	7.7	15
8	E	6.2	12	SSE	9.1	13	SSE	10.8	19
9	NE	5.0	9	SSE	11.1	15	WSW	9.6	17
10	ESE	7.3	11	SE	6.5	13	ESE	6.8	11
11	NE	12.8	20	NNE	8.3	14	NNW	8.5	14
12	SVL	6.5	10	SVL	5.2	9	NNW	11.5	17
13	NNE	9.7	17	ESE	9.0	15	NNW	13.9	21
14	NNE	10.5	14	SE	11.4	19	NW	14.5	21
15	SVL	7.4	11	SSW	15.7	27	WSW	6.1	9
16	NNE	9.7	13	WSW	11.3	18	SVL	7.1	15
17	NW	7.0	13	W	7.4	14	WSW	10.8	18
18	NNE	8.3	13	ESE	5.4	10	ENE	7.6	16
19	ESE	7.0	10	NNE	9.4	15	ENE	11.4	16
20	NNE	8.5	16	NNE	12.7	19	NW	6.5	11
21	NNE	8.7	16	NE	11.7	16	SSE	12.2	18
22	SVL	6.9	12	NW	10.5	14	NNW	9.3	15
23	NNW	12.5	16	ESE	7.3	15	WNW	4.9	9
24	SVL	6.4	9	SE	11.3	16	NW	5.9	13
25	NE	4.3	8	W	10.9	22	SSE	13.3	20
26	SVL	4.5	9	W	13.2	22	SSW	9.7	16
27	ESE	7.7	12	WNW	8.6	14	NW	9.9	14
28	NW	6.2	9	SVL	5.6	13	NNW	9.2	12
29	NNW	8.0	14	NNW	8.2	12	NW	3.5	6
30	SVL	8.2	16	NNW	15.8	25	SSW	5.5	11
21	TATCIAT	75	15	NINTAT	82	12			

TABLE 1c - WIND VELOCITIES

	MA	Y 1975		AUGUST 1975			NOV	NOVEMBER 1975		
	Prev.	Mean	Max.	Prev.	Mean	Max.	Prev.	Mean	Max.	
Day	Dir.	Speed	Vel.	Dir.	Speed	Vel.	Dir.	Speed	Vel.	
1	WNW	6.8	12	SW	5.1	14	SSW	10.3	16	
2	WSW	7.6	14	W	8.5	16	SVL	10.1	15	
3	SW .	2.8	7	SVL	7.6	14	W	12.3	22	
4	NNE	6.5	10	NNW	5.3	9	WSW	6.1	12	
5	NNE	7.8	12	E	5.2	9	SSW	8.1	13	
6	NE	6.8	12	S	10.8	16	SSW	9.8	15	
7	ENE	7.7	10	ENE	7.5	15	NW	6.3	14	
8	NE	4.7	7	SVL	12.6	30	WNW	4.7	9	
9	SVL	3.8	7	WSW	10.8	21	E	6.5	13	
10	SVL	7.9	16	W	6.8	12	N	6.0	10	
11	NE	6.3	13	SSE	6.7	21	NNE	11.8	17	
12	SW	8.4	16	WNW	10.1	16	NNW	7.9	16	
13	SVL	9.3	23	WNW	8.3	12	S	11.9	16	
14	N	10.2	16	SVL	2.8	7	S	8.8	15	
15	SVL	6.5	10	SW	7.4	14	W	5.3	12	
16	SE	9.3	20	WNW	10.8	16	SW	8.3	14	
17	NNW	8.1	13	WNW	7.5	13	WSW	4.3	10	
18	SVL	8.9	20	WNW	2.9	6	SVL	7.8	13	
19	SSE	6.7	13	ESE	6.6	13	SVL	7.5	13	
20	NNW	10.0	16	ESE	9.5	16	NNW	7.2	12	
21	NNW	9.2	15	NW	5.8	10	WNW	5.6	12	
22	NE	5.6	9	SSE	9.5	15	SVL	6.3	10	
23	NNE	6.6	10	SSE	10.5	15	WNW	7.8	13	
24	SSW	9.0	15	ENE	8.5	17	NW	4.3	7	
25	SSW	8.7	15	W	12.9	20	SSW	5.1	7	
26	W	9.9	16	WNW	7.4	13	S	10.1	14	
27	SSW	7.1	10	SVL	6.6	9	S	6.8	10	
28	SVL	4.3	13	SVL	8.9	14	S	5.3	13	
29	NW	7.8	14	SE	10.8	16	NNW	11.3	16	
30	NNW	8.1	14	SVT.	8.5	14	NW	9.2	15	
20	NE	43	10	SSW	6.9	12	2	- •		

Unfortunately, records of wave heights on Lake Winnipeg do not exist. Wave heights can be computed from wind speed, wind duration, wind direction and characteristics of the water body and shoreline configuration. However,

> "since shoreline configuration is a significant factor in computing wave height and associated wave uprush, the values vary widely from one beach area to the next."

(Lake Winnipeg, Churchill and Nelson River Study Board, 1971-75, p.58).

During the period of December to April, the lake and the foreshore of the beach are frozen and therefore not subjected to major water fluctuations so that none of the normal limnic processes take place.

Climate

The area experiences a continental climate. It is characterized by long, cold winters and relatively short, cool summers. Monthly mean temperatures may vary from an average of 66°F for July, the warmest month. Annual precipitation for the area is around 20 inches. The annual snowfall is approximately 60 inches and the summer rainfall for May, June, July approximately 8 inches (Table 2). Regional Geology and Physiography

Pleistocene glaciations are mainly responsible for the surficial deposits covering the immediate Grand Beach

MONTHS	<u>1973</u>	<u>1974</u>	1975	
January	.07	1.61	1.94	
February	.48	.42	.75	
March	.50	1.04	1.13	
April	1.53	2.48	1.43	
Мау	1.16	3.27	1.47	
June	6.67	1.19	3.45	
July	1.60	1.01	2.49	
August	5.86	3.40	4.69	
September	4.65	3.36	1.98	
October	3.02	.24	1.50	
November	2.37	.38	.59	
December	1.02	26	.85	
Total	28.93	18.66	22.27	

TABLE 2 - ANNUAL PRECIPITATION IN INCHES AT GIMLI, 1975

Department of Transport Weather Records

.

/

area. The glacial drift occurs over a bedrock of Ordovician limestone, dolomite, red shale and sandstone, which is rarely exposed. The thickness of the glacial drift varies from 50 to a maximum of 200 feet.

The Grand Beach area is divided into the West and East Beach (Figure 6). Most of the sand deposit is in the form of a bay-mouth bar enclosing a lagoon. The East Beach, north-east of the bar, was chosen as the study area. The area was then divided into two sub-regions. Since the shore line is oriented in a northeast-southwest direction, these two sample areas are designated as the North and South Beach (Figure 7 and 8).

Both the North and South beaches are approximately 60 feet wide with well defined foreshores and backshores. The foreshore slope of the North beach was not as steep as that of the South beach. The average overall gradient was a gentle 1.2° for the North beach, and a significantly steeper 2.3° for the South beach. Both beaches had shrub vegetation including birch, alder and willow. Only the North beach, however, had growth within the sample area.

Solohub and Klovan (1970) state that the Grand Beach area experiences a strong southwest littoral drift which is responsible for the transportation of material in this area. Most of the sediment derived from glacial deposits

grt 77

Looking Northeast Depicting North Beach

Looking Southwest Depicting South Beach

originally comes from local Paleozoic bedrock, particularly the Ordovician Winnipeg Sandstone formation.

Literature Review

Researchers have recognized that the dynamic processes associated with the land-water interface are complex and constitute an area of continuing research. The majority of this research has involved the marine environment. Coates (1972), however, suggests that many of the characteristic marine geomorphic processes may also occur in lacustrine environments. Studies of limnic environments are not as prolific as marine studies, pointing out the possibility for further intensive studies in this area.

Darling (1964) recorded the seasonal changes in morphology of eight beaches along the eastern seaboard of the U.S.A. between southern New Jersey and Rhode Island. The positional displacement of index contours from one survey period to the next was recorded. In this study, recordings of beach profile and tide and wave data were made, and only that portion which is above sea level was included.

Rohrbough, Koehr and Thompson (1964) recorded profile changes on a quasi-weekly and daily basis, from July 1963 to January 1964, along two profiles in Monterey Bay, California. Each profile consisted of a series of 5 cm. pipes driven into the sands perpendicular to the beach. Measurements of sand

elevation were then taken relative to the tops of the pipes, the heights of which were then referred to a common datum. During the study period they experienced an erosion-deposition range in sand height of 100 cm. at the low-tide and midtide levels and diminishing to zero at the back area of the beach where waves did not reach.

Strahler (1964) employing a profile-sampling interval of one half-hour on a beach in New Jersey, found a semidiurnal cycle of cut and fill and associated this with the semi-diurnal tide.

Ingle (1966) studies the lateral movement of beach sand along the coast of California. To trace sand movements under a wide range of foreshore-inshore conditions he made use of fluorescent dyes. A significant percentage of the dyed grains were transported obliquely offshore under all wave conditions.

Inman, Komar and Bowen (1968) also investigated the longshore transport of sand along California beaches. The data indicated that the longshore transport of sand is directly proportional to the longshore component of wave power.

Thompson and Harlett (1968) investigated the relationship between the daily beach profile and wave frequency of Del Monte Beach, California. The data demonstrated that

the daily tidal range was several times larger than the wave height and associated runup during most of the study. They concluded that the general shapes of the profiles significantly reflected the local tidal characteristics.

Survaprakaso Rao, and Kassim (1970) observed the seasonal changes of a beach at Surathkal, along the west coast of India about 20 km. north of Mangalore, during the six month period from February to August, 1969. Profile observations and sediment sampling were carried out at frequent intervals. Profile measurements were taken at 3 to 9 day intervals depending on the magnitude of the changes which had taken place. Sediment samples were also collected. The results indicated that while the beach was subjected to low-wave steepness up to the middle of May, buildup occured. From May through August there were periods of erosion and deposition with the overall effect being one of erosion. Sediment characteristics were recorded and the relationship between grain size (median diameter in mm.) and the foreshore slope was shown; the curve being inserted for comparison with other beaches.

McCann (1972) investigated the special characteristics of Arctic beaches. Due to the long, near total ice cover each year, Arctic beaches are termed as low energy beaches, exhibiting low rates of longshore sediment transport and

little change in beach material. Most areas show yearly variations in ice cover conditions revealing similar variations in wave action. During certain years Arctic beaches may show very little change due to the inhibiting effect of the ice, whereas infrequent catastrophic storms will show decisive changes in beach characteristics. In the particular area of Radstock Bay, S.W. Devon Island, strong winds from the southeast quadrant generated those waves which had the greatest effect on the beach. Dominant longshore movement of material took place during occasional storms such as that of August 11-12, 1969.

Hume and Schalk (1967) in the Point Barrow area of Alaska, recorded the effects of a catastrophic storm which produced a movement of twenty years of normal transport of beach sediment.

Saylor and Hands (1970) investigated the movement of longshore bars of Lake Michigan. Results showed that a significant migration of the offshore bars occured due to a change in lake level. During 1967-1969 Lake Michigan recorded a rise of one-half meter, constituting a shoreward movement of bar crests and troughs over a distance averaging 30 meters. Furthermore they noted extensive shore erosion because longshore bars were now not as effective in dissipating wave energy.

Dubois (1972) recorded seasonal variations in beach and near shore environments along a profile of Lake Michigan. Dubois concluded that changes occur on most marine beaches due to seasonal variations of wave regimes, whereas limnic beaches under study respond to seasonal fluctuations of lake level.

Engstrom (1974) examined foreshore sediments and slopes of 39 beaches in the Apostle Islands of northern Wisconsin. He attempted to link beach foreshore parameters with selected coastal processes characterizing the individual beaches. Engstrom concluded that in time, relationships based on statistical analyses are possible, stipulating however, that repeated testing is still required.

In summary, the literature review reveals that beaches are indeed constantly undergoing changes. The studies range from observations taken on a daily to a seasonal basis. Under normal environmental processes a cycle of deposition and erosion is observable.

There is, however, some evidence that most movement of material may take place during catastrophic events. In these studies, only slight consideration has been given to disastrous storms.

Chapter II

METHODOLOGY

Fieldwork

Topographic surveys were carried out three times during the 1974 summer season. The first survey corresponded with lake ice breakup and was taken May 29. The second, or midsummer, survey took place August 29 and the third, prefreezeup, was taken November 29. These times were assumed to coincide with the open water season, thus covering the low, high, and low energy cycle.

The two study sections are 400 yards apart and are separated by a dense growth of willow bushes and fairly high sand dunes. Grid systems (6 columns x 5 rows) were established over each sample beach. The grid includes the following morphologic zones as defined by King (1959); the back shore, the foreshore, and a small part of the nearshore bottom zone. This system was chosen as it appeared to be the most accurate and easily identifiable method of obtaining samples and profiles for comparison over three surveys.

Grid lines orthagonal to the shore line are referred to as columns (C) and lines parallel to the shore as rows (R) (Figure 9). Columns and rows were uniformly spaced; the intervals between the columns being sixty feet, and

LAY-OUT OF GRID SYSTEM

Figure 9

between the rows, fifteen feet. Stakes of 2" x 4" wood, capped by a 1/8" thick sheet metal top, were driven 5 feet into the ground in each area. Permanent reference stakes $(C_1R_1 \text{ and } C_6R_1)$ defined a base line with origin at C_1R_1 . This established base line facilitated repetitive surveys.

Knowledge of the lake level on the given dates allowed actual measurements to be given to the obtained levelling data. Accurate measurements of distance from shore line to Row One were also taken at each column.

A total of 30 samples from each Beach, each weighing 500 grams, was collected during each survey. All samples consisted of the upper 16 mm. of sediment. Subaqueous samples were taken from a depth of water of about 12 to 16 inches. In this way, each sample is believed to represent the same sedimentation unit.

Laboratory Work

Profiles were drawn to scale along each column from the data obtained from the survey. All 180 samples were split using an Endicott sample splitter. The sample size selected was 100 grams; it was weighed out very accurately and sieved for 15 minutes on a RO-Tap shaking machine. The grade sizes are based on the phi (\emptyset) scale (Krumbein, 1938). Eight inch diameter screens were used at one quarter phi (\emptyset) intervals ranging from -1.00 \emptyset to 4.00 \emptyset inclusive. The resulting

sediment fractions were weighed to 0.01 grams on a Sartorius electric balance.
Chapter III

Results of the Field and Laboratory Study Data Presentation

Locations of the samples, thirty from the North Beach and thirty from the South Beach, are shown in Figure 9.

Profiles and elevations are shown in Figures 10 to 13. Each profile and elevation is identified as to which area, column and time period of the season it belongs. The seasonal changes of volume of sand are recorded in Table 3.

The figures shown in Table 4 (Appendix B) represent the grain size data from the sieve analyses as used in the computer program for statistical analyses. Table 5 (Appendix C) shows the graphical parameters according to columns and rows. Figures 14 to 15 are the cumulative curves of selected samples from both areas at different time (seasonal) intervals.

Composition of Sediments

The mineral contents of the sand samples were found to be almost identical to the results of Solohub and Klovan (1970) and Ball (1972).

The sample material can be broken down into three groups, with quartz being the largest, accounting for 96 percent. Feldspar amounts to approximately 2 percent and ' heavy minerals constitute the balance of the sample material.

Figure 10 (a) NORTH BEACH ELEVATIONS May 29, 1974

(c) NORTH BEACH ELEVATIONS Nov 29, 1974

Figure 11 (a) SOUTH BEACH ELEVATIONS May 29, 1974

	.⊂ _¢	C _s	C.	^c ,	C ₂	
p	719.45	719.32	718.98	719.03	718.97	719.15
R ₂	717.77	718.96	718.60	718.62	718.55	718.69
P .	717.56	717.58	717.60	717.65	717.33	717.28
	716.95	716.98	717.01	716.90	717.03	716.98
R ₃	716.85	716.81	716.70	716.58 Lake	716.61	716.65

Scale 0 10 20 30 Feet

(b) SOUTH BEACH ELEVATIONS Aug 29, 1974

(c) SOUTH BEACH ELEVATIONS Nov 29, 1974

	C.	C _s	l ^C ₄	C3	1 ^C 2	
R.	718.25	718.22	718.19	718.06	718.00	717.90
R ₂	716.92	716.95	717.02	717.05	717.15	716.35
R ₃	716.60	716.52	716.48	716.29	716.31	716.25
D	715.80	715.75	715.70	715.66	715.60	715.70
►4 ₽.	715.62	715.60	715.50	Lake	715.40	715.48
·* 5		- 2 - 3	Scale L 10 20) 30 Feet		

Figure 12 (a) PROFILE C₁ NORTH BEACH 1974

(C) PROFILE C3 NORTH BEACH 1974

(d) PROFILE C₄ NORTH BEACH 1974

Figure 12

(f) PROFILE C₆ NORTH BEACH 1974

			- 0			718
R (718.19	34		718.35		1 (Hay 718.
18	~	718.08		717.98	718.10	717.
	717.71	717.81				(Nov
17	***************************************	716.99		717.11	717.30	
	:					
10						
15						
14						
		↑ 1	Horizontal Vertical	Scale		

(d) PROFILE C4 SOUTH BEACH 1974

36

Figure 13

Table 3

Volumetric Changes of Sand

North Beach

May - August	Erosion	168.38 cu. yds.
Aug Nov.	Erosion	<u>809.18</u> cu. yds.
	Total Erosion	977.56 cu. yds.

South Beach

May - August	Erosion	569.38 cu. yds.
Aug Nov.	Erosion	<u>345.83</u> cu. yds.
	Total Erosion	915.21 cu. yds.

PHT UNTTS

FIGURE 15 CONTINUED (e) $C_c R_2$

Most of the quartz grains vary from sub-rounded to rounded, displaying frosted and pitted surfaces. Approximately 25 percent of the quartz grains have either angular or subangular faces, showing fresh fractures and vitreous lustre. Solohub and Klovan (1970) state that:

> "The frosted grains are identical to those comprising Ordovician Winnipeg Sandstone. The vitreous grains along with the feldspars and heavy minerals, are components of the glacial material."

(Solohub and Kovan 1970, p.86).

Figure 16 and 17 show the typically even distribution of grain size in a vertical and a horizontal plan (May 1974, C_2R_2).

Grain Size - Vertical Plane - May, 1974 $C_2 R_2$

Chapter IV

INTERPRETATION AND DISCUSSION OF THE RESULTS Introduction - Profiles

During the open water season, sand movement is continuously resulting in an endlessly changing beach. Changes in profiles and volumetric changes, accompanying the shifting of sand, are expressions of this phenomenon.

Shoreline erosion and recession have always been serious problems on Lake Winnipeg.

"An associated problem is the movement of sand away from beach areas, particularly during high water periods, causing a deterioration of these areas".

(Lake Winnipeg, Churchill and Nelson Rivers Study Board, 1971-75 p. 5-12)

It is therefore possible to postulate that changes in lake level, should cause a corresponding shift in beach profile. A rise in lake level should be accompanied by an upward and landward movement of the beach profile to maintain a constant position relative to the water level. Each profile can now be considered a representative part of a particular segment of a beach.

According to the Study Board (1971-75) the shore lines of the southern basin of Lake Winnipeg were eroding from one to two feet per year, the extreme values varying from zero to twenty-five feet per year.

Seasonal Changes in Morphology

North Beach

The period of study covered three distinct parts of the year. The first survey was taken on May 29, 1974 soon after break-up, the second during the mid-season on August 29, 1974, and the third on November 29, 1974 before freezeup.

In May, the beach showed the effects of the recent ice and snow cover, displaying overlying debris. Tsang (1973) mentions that ice piling along shore lines of Lake Simcoe is often a spectacular phenomenon, causing damages to shoreline properties. Figure 18 and Figure 19 may be used for illustration as they show debris from ice action in May and a relatively clean beach in November.

At the time of the May 29, 1974 survey, lake level was at 717.33 feet. All columns, except #6 of North Beach, delineate profiles having a well developed berm. Column six was sheltered from the action of water because of a higher elevation and a continuous belt of shrubs and bushes along the edge of the water. The shoreline was crescent shaped (Figure 20). Columns one and two show erosional aspects due to wave action of the lagoon which was about

Accumulation of Debris (North Beach) During

May Survey

Area Clean of Debris (North Beach) During

November Survey

Figure 20

Berm and Crescent Shaped Shoreline of

North Beach (May 29, 1974).

Vegetation Cover at Extreme End of Area

twenty feet away from the sample area at that time. The first portion of the beach, starting from row five leading up to the berm exhibited a slope of approximately three degrees. The backshore area of the beach was almost flat or had a gentle slope measuring up to $1\frac{1}{2}$ degrees.

The results of the survey in August indicate that the beach had undergone a period of flattening and lowering of the profiles. The lake level rose from 717.33 feet in May 29 to 717.62 feet on August 29, 1974. During this time segment, erosion appears to be the dominant feature. Most of the profiles were lowered by approximately six inches and all of the early berm had been destroyed. Some deposition took place as well, however, especially in row five for columns one to four. Columns five and six do not display any deposition, only erosion throughout their respective profiles. The beginning of a new berm and an associated landward movement of the beach had taken place (Figure 21). One reason for the berm not being fully developed may have been the high winds which had occurred on August 25 and 26, 1974 (Table 1b). A large portion of the sample area was inundated by the lake except column six, which was not covered by water at the time of the survey (Figure 22). The total erosion in volume of sand during the period from

Landward Movement of North Beach (August 29, 1974).

Column 6 of North Beach Not Covered by Water In Spite of High Water Level (August 29, 1974). the May to the August survey amounted to 168.38 cubic yards.

The last survey on November 29, by which time the lake level had fallen from 717.62 to 715.70 feet, showed a definite period of erosion during which the whole beach was lowered extensively. In some areas this amounted to a difference of one foot in elevation, corresponding to a drop in the lake level and indicating a definite lakeward migration of the foreshore. The shoreline exhibited several small baylets and the beginning of a definite berm (Figures 23 and 24). The change in volume of sand from August to November amounted to a decrease of 809.18 cubic yards, giving a total net change of 977.56 cubic yards for the entire season.

South Beach

The shore line along the South Beach did not at any time exhibit any formation of baylets or crescents. Throughout the season this beach displayed a relatively straight shore line. The reason for this occurrence can probably be traced to the absence of vegetation in the immediate sample area (Figures 25 and 26).

In May the area was covered with some debris. However, the amount was not as great as in the more sheltered North Beach. The berm in the foreshore area was not as pronounced as in the North Beach (Figure 27); the reason for this might

Beginning of Gentle Slope and Berm

North Beach. (November 29, 1974).

Baylets, North Beach. (November 29, 1974).

South Beach, (May 29, 1974).

South Beach, (November 29, 1974).

Debris, and Berm of South Beach (May 29, 1974)

be the comparatively steeper slope of the backshore area. The foreshore slope varied from 1° to $1\frac{1}{2}^{\circ}$ whereas the backshore slope had a variation of between 5° and 6° with column 5 having the steepest slope.

The August survey indicates that during the period between May and August heavy erosion had taken place. The area most affected was between rows one, two and three, another display of landward extension of the foreshore area. The entire area between rows two and five became the foreshore and exhibited a gentle slope, not unlike the foreshore slope during the May survey. The backshore area (row one and two) maintained approximately the same steep slope as before. The South Beach berm during this survey was even less developed than the North Beach during the same period. The decrease in volume during this period was 569.38 cubic yards.

The survey in November shows a similar extensive erosion as in the North Beach area. The shore line however remained relatively straight, and instead of baylets this area had the beginning of a small off-shore bar. The change in volume was 345.83 cubic yards, amounting to a total loss of 915.21 cubic yards for the season.

Both beaches illustrate the migration of their respective segments, either landward with high water level, or lakeward with lower lake levels. On inspecting the width of the beaches at various times (Figures 28 and 29), it can be clearly seen that the North Beach has a more erratic displacement whereas the South Beach is more geometrical or even. As both areas are subjected to the same rise in water level, the difference in morphology must be due to the original difference in topography. The South beach had a comparatively steeper slope, propagating a similar retrogradation and progradation of the area; not allowing any changes along the shore line. The shore line remained relatively straight throughout the season. The North beach, with its flatter topography, except column six which had a higher elevation, experienced more extensive flooding and the smoothening and flattening of the area was more pronounced. The shore line in November showed formation of various baylets throughout its length and the beginning of a crescent in the area of column five and six.

Introduction - Grain Size Parameters

Various measures are used to describe grain size distribution of sediment. Textural characteristics can be

a a second a

identified through the use of descriptive statistics. In this study, Folk's four statistical parameters are adopted: the mean, standard deviation, skewness and kurtosis. The mean and standard deviation are in phi units, skewness and kurtosis are dimensionless statistics describing the symmetrical characteristics of a frequency curve. More complete information on different moment measures is detailed in Appendix A.

Krumbein (1938) gave an extensive treatment of specific concepts such as the log-normality of grain size distribution. Doeglas (1946) showed that grain size distribution followed an arithmetic probability. His analyses yielded an empirical classification of curve shapes which he related to specific environments.

Inman (1949) delineated the relationship between texture and process; defining three basic modes of transport, surface creep, saltation and suspension. In 1952, Inman further recommended the use of five parameters for statistical computation. These were: the mean diameter, standard deviation, kurtosis, and two measures of skewness. Folk and Ward (1957), Friedman (1961), and Visher (1969), have contributed significant studies using the same statistical parameters, except that only one measure of skewness was used. Solohub and Klovan (1970) stated that if it can be

assumed that the mean grain size is a measure of energy at the time of deposition, then the mean grain size delineates different environmental conditions.

Grain Size Parameters

North Beach

The mean size of all the samples taken in May ranges from 0.542 Ø at C_2R_3 , to 1.951 Ø at C_4R_2 ; the difference amounting to 1.409 Ø, indicating a fairly uniform grain size distribution for this area. Row three was an exception, C_2, C_3, C_5 and C_6 having readings under 1 Ø delineating very coarse sand. However, the average mean size of row three (1.115 Ø) is still within the medium sand range. The reason for this difference could be due to residual material from ice action of the previous winter. Furthermore, row three is located beyond the berm away from the waterline facilitating trapping of larger particles.

Samples from the August survey reflect a slightly larger difference in mean particle size, the range was between 1.387 \emptyset at C_1R_2 and 2.56 \emptyset at C_6R_4 amounting to a difference of 0.769 \emptyset with all \emptyset values greater than one. Most of the sample area was covered by water accounting for the absence of larger particle size.

The results of the November survey had very similar values to that of August. The difference was 0.791 \emptyset

with a value of 1.286 \emptyset at C_3R_2 to 2.077 \emptyset at C_6R_3 . All sample points along C_1 to C_5 except row five were above water level. Column six was above water throughout the season.

Sahu (1964) states that the mean particle size reflects the average kinetic energy of a process. Hjulstrom (1939) assumes a direct relationship between grains coarser than the range of 0.3 to 0.6 millimeters and the energy needed to move those particles. Materials finer than the range of 0.3 to 0.6 needed an increase of threshold velocity to initiate particle movement with decreasing particle size.

The study area illustrates a similar effect, with the rows parallel to the lakeshore showing the trend of advance and retreat of the lake level, and therefore the rise and fall of kinetic energy, by exhibiting a gradual decrease of fines away from the water line. Samples from August and November indicate the uniformity of the processes involved, and are lacking the larger sand particles which were found in May, satisfying the different geologic processes which must have acted on this area during the winter months.

The standard deviation, or sorting, depicts the variation of the kinetic energy about the mean energy level (Sahu, 1964): larger sorting coefficients reflect greater

variations in energy level. A large sorting value reflects a poorly sorted sediment, whereas a small range of sediment size denotes well sorted material.

The values for the standard deviations (except for one isolated sample unit) exhibited a small range for the whole area over the entire season. The low and high values for May, August, and November respectively are, 0.223 Ø at C_5R_2 , 0.262 Ø at C_4R_3 , 0.243 Ø at C_5R_4 , 0.909 Ø at C_3R_3 , 0.608 Ø at C_2R_3 , and 0.559 Ø at C_2R_1 . C_3R_3 is the only unit which is moderately sorted. All others range from very well sorted to moderately well sorted. It seems that beach sands tend to be raked back and forth by the continual motion of wave swash and this continuous reworking results in good sorting.

Skewness is a measure of the asymmetry of a sediment frequency distribution, it relates the position of the mean relative to the median (Dubois, 1972). In a positively or fine skewed sediment, the mean is offset from the median towards the fine tail, whereas in a negatively or coarse skewed sediment, the mean is offset from the median towards the coarse tail of the distribution. Friedman (1961) postulates the skewness for dune sand is generally positive and that medium sands which are subjected to high

wave energies will be negatively skewed because the fine clasts will have been winnowed out. Therefore the mean of a sediment distribution is offset from the median toward the coarse fraction generating a negatively skewed value (Dubois, 1972).

From the first survey in May, twenty three out of thirty values show negative skewness, the maximum range being between 0.171 to - 0.287. In August, twenty six values were negatively skewed with a maximum range of 0.186 to - 0.328. The November survey also had only four values exhibiting positive skewness. The range was between 0.112 to - 0.3117. August and November survey results tend slightly more to a beach environment than the May values. The positively skewed values may be due to some modification by the wind; some however were found below lake level. Stephenson (1970) suggests that skewness seems to be related to environmental conditions and energy. He claims that negative skewness can be associated with areas of erosion while positive skewness is indicative of deposition. Although all of the region shows aspects of erosion, some deposition may have occured during any segment of time accounting for the positively skewed values.

Dubois (1972) states that the specific geologic meaning of kurtosis has not been fully determined. According

to Folk (1957) kurtosis as used by sedimentationists measures the ratio of the sorting in the extremes of the distribution compared with the sorting in the central part. If the central portion is better sorted than the tails, then the curve is leptokurtic or excessively peaked. If the tails are better sorted then the curve is deficiently peaked or platykurtic. If the curve is normal, or mesokurtic, the $K_{\rm G}$ value is from 0.90 to 1.11 (Folk, 1968). On working out average values along rows, it can be seen that all samples fall within the mesokurtic category again pointing to the uniformity of the environmental material and environmental processes.

South Beach

The mean size of the samples collected during the May survey had no values under 1.0 \emptyset as was the case at the North beach. On examining the average values of all the rows, it is also row three which has the lowest value. The average mean value of the North beach of row three was 1.115 \emptyset and the South beach 1.366 \emptyset . The reason for slightly larger particles in both areas may be that they delineate particular processes occuring during the dormant season. Wave energy may be strong enough to carry larger particles to this limit and deposition will take place, whereas the swash is lacking the energy required for transportation of

larger particles.

The August mean averages indicate larger particles for all rows, whereas the November mean averages show an increase of smaller particle size. This phenomenon may be due to the fact that the shoreline of the South beach was relatively straight, lacking any vegetation cover and therefore more exposed to environmental processes. With a higher water level during August a higher kinetic energy would substantiate movement of the larger particle size; during November a lower lake level would constitute a lower energy level and subsequently a smaller particle size.

During the November survey, the South beach does not exhibit as clearly the gradual decrease of fines away from the water line as does the North beach - especially row four which has a higher average mean value than any other row during this time segment. On examining elevations and profiles, it can be seen that row four delineates the boundary of water environment and shows the beginning of a berm which could cause trapping of slightly larger particles.

The values for the standard deviation for the South beach again indicate the uniformity of the area; most of the values for the season range from very well sorted to well sorted, having \emptyset values from 0.35 \emptyset or less to 0.50 \emptyset . Three exceptions were found during the May survey at $C_{3}R_{2}$

(0.5434), C_1R_4 $(0.540 \ \emptyset)$ and at C_1R_5 $(0.626 \ \emptyset)$. As well, three other values found in the August survey were in the moderately well sorted to moderately sorted category, being $(0.797\ \emptyset)$ at C_1R_3 , $(0.557 \ \emptyset)$ at C_1R_5 and $(0.617 \ \emptyset)$ at C_5R_5 .

Ball (1972) states that scalloping may account for deviation of values in similar areas and this would account for the higher values in May; however, the larger material in August is hard to explain as all stations in questions were covered by water and therefore acted upon by the same processes.

The South beach had twelve samples in May, sixteen samples in August and five samples in November positively skewed, indicating the more exposed aspect of the beach. It is clearly not a dune environment, but rather a beach which has been slightly modified by wind action.

Similar average values for kurtosis are exhibited by the South beach as the North beach. Of fifteen readings only one is leptokurtic, the remainder are mesokurtic. The high values are from the August survey and are found in row five, which was covered by more than one foot of water which caused less disturbance of the material.

Visher (1969) found that 50-99% of beach material between 0.5 \emptyset and 4.25 \emptyset was a result of saltation activity. The range was determined by the Coarse Truncation and Fine

Truncation points on a cumulative frequency curve. 90% of the samples from the study area were found to be in the range from 1 \emptyset to 3 \emptyset showing similarities in the cumulative frequency curves (Figures 14 and 15), thus appearing to bear out Visher's findings.

Chapter V

CONCLUSION

Coastal studies of marine beaches have shown that changes in morphology are manifestly associated with wind regimes. Increased storms during the winter season cause erosion of beaches. In summer when moderate winds prevail reconstruction of the beach takes place. Dubois (1972) further states that not all marine beaches undergo a seasonal change. Deviations from the cycle are functions of beach orientation relative to wind direction, and of the absence of major seasonal climatic variation.

Seasonal changes in morphology of limnic beaches respond to seasonal fluctuations in lake levels. In this study it was found that the rise and fall of lake level was indeed the dominant variable affecting the study area. Winds and waves must also bring about changes for they can be related directly to the elevation of lake level.

Moisture content and consequent saturation of the sand, which was not measured, should also be considered as a factor altering the beach profile. The rate of erosion, or lowering of the area due to heavy saturation of the material, must have been excessive, but can only be inferred from the amount of erosion over the whole season. Vegetation cover, slope, and the original topography of the

area will influence subsequent erosion or deposition.

Lake level for the entire season (1974) was markedly higher than the mean level of 713.22 feet (Figure 5b) denoting an atypical increase in water level. The Technical Report (1971-75) states that the average relationship between water level increase and loss of beach area was estimated to be a twenty percent loss of beach width for each one foot increase in water levels above the mean level.

Throughout the season South and North beaches underwent a heavy cycle of erosion. Deposition or build up of the beach area had not manifested itself clearly by November, 1974; therefore the seasonal cycle of dynamic equilibrium normally associated with limnic lakes had not been fully completed at this particular segment of time. As the lake level rose during the season, a marked landward movement of the beach was noted. While the lake level increased by 0.29 feet, the loss in width was approximately twenty to twenty-five feet. In November the reverse occured. With the drop in lake level, a definite lakeward movement of the foreshore took place. The drop in lake level between August and November amounted to 1.13 feet, expanding the beach by approximately thirty feet.

"The effect of lake level on sand beaches is very complex. Neither the available data for Lake Winnipeg nor the present state of the art of analysis is adequate to offer more than some very general comments on the subject."

(Program for Regulation of Lake Winnipeg, 1972, p.11).

On comparing the grain-size parameters of the two beaches it can be deduced that the two areas may be viewed as a single beach unit delineating the uniform nature of source sediments. The foreshore bottom, the foreshore and backshore have similar parameters throughout the season with some isolated exceptions. The original physiography was slightly different from one region to the other, accounting for the sequential change in topography for the respective areas.

Plotting mean size against the distance from the base line emphasizes the uniformity of grain size (Figures 30 to 31), and on plotting standard deviation against mean size a definite clustering of samples is revealed, indicating the same environmental processes (Figures 32 to 33), (Wong, P.P., 1971). These results coincide with Dubois' findings.

82_

"No surficial sediments showed variations both in mean particle size and in sorting between the study periods. Judged on the averages of mean grain size and sorting, the textural properties of the nearshore sediments appear to be constant throughout the year."

(Dubois, 1972, p.78).

It was hoped that a relationship between the changes in morphology and the changes in sedimentation might be established. These changes could not be correlated, however, due to the very uniformity of source material and processes acting on the study area.

Suggestions for further study to acquire a more comprehensive knowledge of seasonal changes of a beach, would include monitoring of an area over a period of several years. This may confirm seasonal patterns during typical years, and deviations from those patterns during atypical years, and establish whether these atypical years disrupt the dynamic cycle of equilibrium.

Furthermore, observation on a daily basis, particularly after catastrophic events, would add much data to the study of beach movement. For such a study, a permanently manned station, set aside from public use, could be envisioned. An undertaking of this nature is, however, outside the scope of this paper.

As a final conclusion for this study, it can be stated that changes in morphology of a beach are specific to locality, source material and variables governing the rise and fall of lake level. Sandy beaches should be considered as unique entities which differ from region to region, reaffirming the view that they are dynamic and variable landforms.

BIBLIOGRAPHY

Bagnold, R.A.,	1937, <u>The Size-Grading of Sand by Wind:</u> Proc. Roy. Soc. London, Ser. A. 163, P. 250-264.
Bagnold, R.A.,	1941, <u>Physics of Blown Sand and Desert</u> <u>Dunes:</u> Methuen and Co., 265P.
Bagnold, R.A.,	1966, An Approach to the Sediment Trans- port Problem from General Physics: U.S. Geol. Survey, Prof. Paper, 422-I, p. 11-137.
Ball, T.F.,	1972, The Significance of Grain Size and Heavy Minerals Volume Percentage as Indicators of Environmental Character, Grand Beach, Manitoba: A Case Study: Unpub. M.A. Thesis, University of Manitoba.
Bird, E.C.F.,	1968, <u>Coasts:</u> M.I.T. Press, Cambridge, Mass., 246P.
British Standard	1377, 1961, <u>Methods of Testing Soils</u> for Civil Engineering Purposes: British Standards Institution.
C oates, D.R.,	ed. 1972, <u>Coastal Geomorphology:</u> Pub- lication in Geomorphology, State Univer- sity of New York, Binghamton, N.Y. 13901, 404P.
Darling, J.M.,	1964, <u>Seasonal Changes in Beaches of the</u> North Atlantic Coast of the United States: Proc. of Ninth Conf. on Coastal Engineer- ing, P. 236-248.
Doeglas, D.J.,	1946, <u>Interpretation of the Results of</u> <u>Mechanical Analyses:</u> Journ. Sed. Petrol- ogy, Vol. 16, P. 19-40.

Doeglas, D.J., 1968, <u>Grain-Size Indices</u>, <u>Classification</u> <u>and Environment</u>: Journ. Sed. Petrology, Vol. 10, p. 83-100.

Dubois,	R.N.,	1972, <u>Seasonal Variations in Beach and</u>
		Nearshore Morphology and Sedimentology
		along a Profile: Unpub. Ph. D. Thesis,
		University of Wisconsin.

- Dubois, R.N., 1973, <u>Seasonal Variation of a Limnic</u> <u>Beach:</u> Geolog. Soc. of America, Bulletin, Vol.84, p. 1817-1824.
- Einarsson, E., and Lowe, A.B., 1968, <u>Seiches and Set-</u> <u>Up on Lake Winnipeg:</u> Limnology and Oceanography, Vol.13, p. 257-271.
- Engstrom, W.N., 1974, <u>Beach Foreshore Sedimentology and</u> <u>Morphology in the Apostle Islands of</u> <u>Northern Wisconsin:</u> Journ. Sed. Petrology, Vol. 44, No. 1, p. 190-206.
- Folk, R.L., 1962, <u>Of Skewness of Sands:</u> Journ. Sed. Petrology, Vol. 32, p. 145-146.
- Folk, R.L., 1966, <u>A Review of Grain Size Parameters:</u> Sedimentology, Vol.6, p. 73-94.
- Folk, R.L., 1968, <u>Petrology of Sedimentary Rocks:</u> Hemphill's Draw M., University Station, Austin, Texas. 170P.
- Folk, R.L., and Ward, W.C., 1957, <u>Brazos River Bar:</u> <u>A Study in the Significance of Grain-</u> <u>Size Parameters:</u> Journ. Sed. Petrology, Vol. 27, p. 3-26.
- Friedman, G.M., 1961, Distinction Between Dune, Beach and River Sands from the Textural Characteristics: Journ. Sed. Petrology, Vol. 31, p. 514-529.
- Friedman, G.M., 1967, <u>Dynamic Processes and Statistical</u> <u>Parameters Compared for Size Frequency</u> <u>Distributions of Beach and River Sands:</u> Journ. Sed. Petrology, Vol. 37, p. 327-354.

- Greswell, R.K., 1957, <u>Physical Geography of Beaches and</u> <u>Coastlines:</u> Hulton Educational Publications. 128P.
- Hjulstrom, F., 1939, <u>Transportation of Detritus by</u> <u>Moving Water:</u> Recent Marine Sediments, P.D. Trask (ed.), Amer. Assoc. Petroleum Geol., p. 1-31.
- Hume, J.D., and Schalk, H., 1967, <u>Shoreline Processes</u> <u>near Barrow Alaska: a Comparison of the</u> <u>Normal and the Catastrophic:</u> Arctic, Vol. 20, p. 86-103.
- Ingle, J.C., 1966, <u>The Movement of Beach Sand:</u> Elsevier Publishing Co., 221P.
- Inman, D.L., 1949, Sorting of Sediment in Light of Fluvial Mechanics: Journ. Sed. Petrology, Vol. 19, p. 51-70.
- Inman, D.L., 1952, <u>Measures for Describing the Size</u> <u>Distribution of Sediments:</u> Journ. Sed. Petrology, Vol. 22, p. 125-145.
- Inman, D.L., Komar, P.D., and Bowen, A.J., 1968, <u>Longshore Transport of Sand:</u> Proc. of Ninth Conf. on Coastal Engineering, p. 298-306.
- King, C.A.M., 1972, <u>Beaches and Coasts:</u> Ed. Arnold, 570P.
- King, L.J., 1969, <u>Statistical Analysis in Geography:</u> Prentice-Hall, Inc., Englewood Cliffs, N.J., 288P.
- Klovan, J.E., 1966, <u>The Use of Factor Analysis in</u> <u>Determining Depositional Environments</u> <u>from Grain Size Distribution:</u> Journ. Sed. Petrology, Vol. 36, p. 115-125.
- Krumbein, W.C., 1937, <u>Sediments and Exponential Curves</u>: Journ. Geology, Vol. 45, p. 577-601.

- Krumbein, W.C., 1952, <u>Statistical Problems of Sample Size</u> and Spacing on Lake Michigan Beaches: Coastal Engineering Proc. 3rd. Conf., p. 147-162.
- Krumbein, W.C., 1953, <u>Statistical Designs for Sampling</u> <u>Beach Sand:</u> Amer. Geophys. Union Trans. Vol. 34, p. 857-867.
- Krumbein, W.C., and Pettijohn, F.J., 1938, <u>Manual of</u> Sedimentary Petrography: Appleton-Century-Crofts, Inc., 549P.
- Krumbein, W.C., and Slack, H.A., 1956, <u>Relative Efficiency</u> of Beach Sampling Methods: Beach Erosion Board, Technical Memo, 90, 43P.
- Lake Winnipeg, Churchill and Nelson River Study Board Canada, Manitoba, 1971-75, <u>Technical</u> <u>Report:</u> p. 5-1 - 5-16.
- McBride, E.F., 1971, <u>Mathematical Treatment of Size</u> <u>Distribution Data:</u> Ed. Carver, R.E., Proc. in Sed. Petrology, Wiley-Interscience, Toronto, p. 109-121.
- McCann, S.B., 1972, <u>Beach Processes in an Arctic</u> <u>Environment:</u> Coastal Geomorphology, Publications in Geomorphology, State University of New York, Binghampton, N.Y., p. 141-155.
- Manitoba Soil Survey, 1967, <u>Detailed Reconaissance Soil</u> <u>Survey of the Lac Du Bonnet Area</u>: Soils Report, No. 15, Winnipeg, 115P.
- Mason, C.C., and Folk, R.L., 1958, <u>Differentiation</u> of Beach, Dune and Aeolian Flat Environments by Size Analysis, Mustang Island, <u>Texas:</u> Journ. Sed. Petrology, Vol. 28, p. 211-226.

- Rohrbough, J.D., Koehr, J.E. and Thompson, W.C., 1964, <u>Quasi-Weekly and Daily Profile Changes</u> <u>on a Distinctive Sand Beach:</u> Proc. of Ninth Conf. on Coastal Engineering, p. 249-258.
- Sahu, B.K., 1964, <u>Depositional Mechanisms from the</u> <u>Size Analysis of Clastic Sediments:</u> Journ. Sed. Petrology, Vol. 34, p. 73-83.
- Saylor, J.H., and Hands, E.B., 1970, <u>Properties of</u> <u>Longshore Bars in the Great Lakes:</u> Proc. of Ninth Conf. on Coastal Engineering, p. 839-853.
- Shepard, F.P., and Young, R., 1961, <u>Distinguishing</u> <u>Between Beach and Dune Sands:</u> Journ. Sed. Petrology, Vol. 31, p. 196-214.
- Siegel, S., 1950, <u>Non Parametric Statistics for the</u> <u>Behavioural Sciences:</u> McGraw-Hill, New York. 312P.
- Solohub, J.T., 1967, <u>Grand Beach. A Test of Grain-</u> <u>Size Distribution Statistics as Indicators</u> <u>of Depositional Environments:</u> Unpubl. M.Sc. Thesis, University of Manitoba.
- Solohub, J.T., and Klovan, J.E., 1970, <u>Evaluation of</u> <u>Grain-Size Parameters in Lacustrine</u> <u>Environments:</u> Journ. Sed. Petrology, Vol. 40, p. 81-101.
- Stephenson, R.A., 1970, <u>On the Use of Grain-Size Analysis</u> <u>in Geomorphological Studies:</u> Professional Geographer, Vol. XXII, No. 4, p. 199-203.
- Strahler, A.N., 1964, <u>Tidal Cycle of Changes in an</u> Equilibrium Beach, Sandy Hook, New Jersey: Tech. Report No. 4, Dept. of Geology, Columbia University.

- Sutton, R.G., Lewis, T.L., and Woodrow, D.L., 1974, <u>Sand Dispersal in Eastern and Southern</u> <u>Lake Ontario:</u> Journ. Sed. Petrology, Vol. 44, No. 3, p. 705-715.
- Thompson, W.C., and Harlett, J.C., 1968, <u>The Effect of</u> <u>Waves on the Profile of a Natural Beach:</u> Proc. of Ninth Conf. on Coastal Engineering, p. 352-372.
- Tsang, Gee, 1973, <u>Ice Piling on Lakeshores:</u> Scientific Series No. 35, Inland Waters Directorate Canada Centre for Inland Waters. Burlington, Ontario. 12P.
- Visher, G.S., 1969, <u>Grain-Size Distributions and De-</u> positional Processes: Journ. Sed. Petrology, Vol. 39, p. 1074-1106.
- Visher, G.S., 1967, <u>The Relations of Grain-Size to</u> <u>Sedimentary Processes:</u> Amer. Assoc. Petroleum. Geol. Bull., Vol. 51, p. 484-490.
- Wong, P.P., 1971, <u>Beach Changes and Sand Movement</u> in Low Energy Environments, West Coast, <u>Barbados:</u> Unpub. Ph.D. Thesis, McGill University.

APPENDIX A

A Review of Grain Size Parameters as per Computer Program. Introduction

One of the problems in sedimentology is the ability to give a definite conclusion with respect to its environment and measurable sediment parameters. McBride for example, states:

> "Grain size analyses are made for one or more of the following reasons:

- To describe samples in terms of statistical measures.
- To determine the agent (wind, river, turbidity, current, etc.) of transportation and deposition.
- To correlate samples from similar depositional environments or stratigraphic units.
- To determine the process (suspension, traction, saltation, etc.) of final deposition.
- 5) To determine the environment of depositional channel, floor plain, beach, dune, neritic marine, etc."

(McBride, 1971 p. 109).

The mean is a measure to determine overall average size. The mean is affected by every grain in the distribution and therefore should be an indicator of the environmental process.

The standard deviation (\mathfrak{SI}) is used to find an acceptable method of sorting measure. As in graphic approximation to the mean, the more of a curve that is used for a sorting measure, the more accurate the measure will be. Skewness measures the degree of asymmetry and whether a curve has an asymmetrical tail on the left or right. Friedman (1961) states that the skewness for dune sand is generally positive, while the skewness for beach sand is negative. Furthermore, Stephenson (1970) suggests that skewness seems to be related to environmental conditions and environment energy. He claims that negative skewness has been related to areas of erosion while positive skewness is indicative of deposition.

95

Kurtosis measures the ratio between the spread in the central part of the distribution and the spread in the tails of the curve.

Folk (1968) states:

"If the central portion is better sorted than the tails, the curve is said to be excessively peaked or leptokurtic; if the tails are better sorted than the central portion, the curve is deficiently or flat peaked and platykurtic."

(Folk 1968, p. 48).

Statistical Parameters and Formulae.

Folk and Ward (1957)

1) Mean size (Mz)

 $= \cancel{\emptyset} \ 16 \ + \ \cancel{\emptyset} \ 50 \ + \ \cancel{\emptyset} \ 84$

2) Inclusive graphic standard deviation (\mathscr{O}_{I}) = $\frac{\emptyset \ 84 - \emptyset \ 16}{4} + \frac{\emptyset \ 95 - \emptyset \ 5}{66}$ 3) Skewness (SK_{I}) = $\frac{\emptyset \ 84 + \emptyset \ 16 - 2 \ \emptyset \ 50}{2 \ (\emptyset \ 84 - \emptyset \ 16)} + \frac{\emptyset \ 95 + \emptyset \ 5 - 2 \ \emptyset \ 50}{2 \ (\emptyset \ 95 - \emptyset \ 5)}$ 4) Kurtosis (KG) = $\frac{\emptyset \ 95 - \emptyset \ 5}{95 - \emptyset \ 5}$

Inman (1952)

1) Mean = $\cancel{\emptyset \ 16} + \cancel{\emptyset \ 84}$ 2

2) Standard Deviation (
$$\mathcal{O}_{I}$$
)
= $\cancel{0} 84 - \cancel{0} 16$

3) Skewness (SK_T)

The first measure of skewness is used for the central part

$$= \underbrace{\emptyset \ 16 + \emptyset \ 84 - 2 \ \emptyset \ 50}_{\emptyset \ 84 - \emptyset \ 16}$$

and the second measure of skewness is used for the tails,

$$= \underbrace{\emptyset \ 5 + \emptyset \ 95 - 2 \ \emptyset \ 50}_{\emptyset \ 84 - \emptyset \ 16}$$

4) Kurtosis (KG)

$$= \frac{(\emptyset \ 95 - \emptyset \ 84 - \emptyset \ 16)}{\emptyset \ 84 - \emptyset \ 16}$$

Friedman (1961) Moment Measure

Mean $(\bar{X}\emptyset)$ - First moment

 $\bar{x} \phi = 1/100 \Sigma fm \phi$

where $\bar{\mathbf{x}} \not 0$ is the mean grain size (phi units) $\not i$ is the grade size frequency, and m $\not 0$ is the mid point of each grain size (phi units).

Skewness (3 \emptyset) Third moment

 $3 \emptyset = (1/100) \quad \emptyset \stackrel{-3}{\rightarrow} \sum i (m \emptyset - \bar{x} \emptyset)^3$

where 3 \emptyset is the skewness and \emptyset is the standard deviation (phi units) and which is expressed by

$$\Theta \emptyset = (\Sigma f) (m \emptyset - \overline{X} \emptyset) 2/100 \frac{1}{2}$$

Kurtosis (4 \emptyset) - Fourth moment

 $4 \not 0 = (1/100) \quad \not 0^{-4} \sum f (m \not 0 - \overline{x} \not 0)^4$ where $4 \not 0$ is the kurtosis.

APPENDIX B

ROW I

	cl			c ₂			C ₃		
ø	May	Aug.	Nov.	<u>May</u>	Aug.	Nov.	May	Aug.	Nov.
-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.75	0.08	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.03
-0.50	0.29	0.00	0.00	0.00	0.00	0.18	0.00	0.07	0.05
-0.25	0.47	0.00	0.00	0.00	0.00	0.20	0.00	0.09	0.08
-0.00	1.49	0.00	0.00	0.00	0.00	1.83	0.00	0.15	0.10
0.25	3.10	0.02	0.00	0.03	0.11	2.00	0.00	0.17	0.12
0.50	4.31	0.05	0.01	0.11	0.12	3.30	0.05	0.33	0.23
0.75	5.27	0.08	0.07	0.21	0.13	4.81	0.05	0.55	0.50
1.00	9.22	0.33	0.46	1.41	0.40	9.04	0.06	1.58	1.51
1.25	13.12	3.55	2.35	12.25	1.92	16.40	0.33	3.95	5.93
1.50	17.52	14.51	7.61	24.30	27.34	16.56	3.83	6.23	11.60
1.75	22.77	23.00	14.72	29.83	37.44	16.71	21.84	10.12	19.28
2.00	14.99	32.35	25.82	23.90	18.93	17.02	39.46	24.29	27.70
2.25	5.73	20.14	28.56	7.03	9.10	8.57	28.11	32.38	20.60
2.50	1.09	4.34	14.23	0.43	3.35	2.25	5.11	14.27	7.04
2.75	0.24	1.14	4.86	0.13	0.70	0.69	0.83	4.41	3.09
3.00	0.03	0.19	0.78	0.02	0.12	0.19	.12	0.83	1.23
3.25	0.01	0.01	0.08	0.00	0.06	0.07	0.01	0.16	0.32
3.50	0.00	0.00	0.03	0.00	0.03	0.02	0.00	0.07	0.10
3.75	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.02	0.06
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	, 0.01	0.20
		с ₄			c ₅			с ₆	
-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00
-0.50	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.08	0.00
-0.25	0.00	0.00	0.06	0.06	0.05	0.07	0.03	0.21	0.05
0.00	0.00	0.00	0.65	0.09	0.06	0.08	0.07	0.30	0.25
0.25	0.00	0.02	0.98	0.12	0.08	0.09	0.10	0.33	0.49
0.50	0.02	0.03	1.94	0.36	0.13	0.30	0.21	0.62	1.14
0.75	0.02	0.04	3.94	1.68	0.20	0.71	0.42	1.00	1.92
1.00	0.08	0.05	10.15	6.95	0.60	3.16	1.89	3.08	4.35
1.25	0.58	0.15	21.03	11.71	3.11	12.90	8.73	9.45	10.88
1.50	5.26	1.37	23.00	12.00	12.86	22.38	16.66	17.50	16.11
1.75	23.44	17.82	20.20	14.98	29.34	23.40	21.91	23.04	22.69
2.00	46.03	40.35	13.88	24.71	33.08	23.85	27.28	25.57	26.38
2.25	20.05	30.70	3.49	21.30	16.00	10.76	17.24	14.22	12.47
2.50	3.03	5.61	0.33	4.79	3.05	1.57	3.85	3.39	2.30
2.75	1.33	0.67	0.02	0.91	0.77	0.35	0.97	0.63	0.50
3.00	0.03	0.09	0.01	0.11	0.17	0.05	0.14	0.03	0.08
3.25	0.01	0.01	0.00	0.02	0.02	0.01	0.02	0.00	0.01
3.50	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

<u>TABLE 4 - Grain Size Data -</u> Sieve Analysis (Grams), North Beach.

ROW 2

	cl			c2			c ₃		
Ø	May	Aug.	Nov.	May	Aug.	Nov.	May	Aug.	Nov.
-1.00	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.75	0.36	0.11	0.00	0.00	0.05	0.00	0.00	0.00	0.00
-0.50	0.47	0.39	0,00	0.00	0.20	0.00	0.00	0.00	0.00
-0.25	0.85	0.56	0.00	0.00	0.25	0.03	0.00	0.07	0.00
-0.00	1.54	1.21	0.00	0.00	0.29	0.05	0.00	0.11	0.11
0.25	3.62	1.32	0.00	0.00	0.36	0.07	0.00	0.12	0.20
0.50	4.87	2.59	0.00	0.05	0.63	0.13	0.02	0.13	0.76
0.75	5.09	4.37	0.02	0.23	1.12	0.20	0.02	0.14	1.97
1.00	8.28	10.66	0.15	3.70	4.05	0.47	1.00	0.43	12.13
1.25	12.80	19.78	0.65	29.58	13.63	1.90	1.65	1.92	41.17
1.50	20.39	16.95	2.15	30.91	18.88	5.16	10.20	5.43	23.20
1.75	19.85	16.79	8.83	20.31	19.80	16.82	30.22	13.50	7.63
2.00	14.65	14.99	33.01	11.50	24.07	32.91	33.63	34.61	3.97
2.25	5.56	7.85	40.02	2.93	12.83	28.60	19.22	31.31	2.92
2.50	0.79	1.37	12.50	0.41	2.66	9.47	3.25	9.12	2.36
2.75	0.16	0.38	2.04	0.11	0.67	3.11	0.59	2.32	2.35
3.00	0.01	0.19	0.19	0.01	0.14	0.67	0.07	0.33	0.83
3.25	0.00	0.02	0.01	0.00	0.03	0.10	0.01	0.06	0.13
3.50	0.00	0.00	0.00	0.00	0.01	0.03	0.00	0.03	0.03
3.75	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		e_4		`	с ₅		·	с _б	
-1.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.08	0.29
-0.75	0.00	0.00	0.00	0.00	0.18	0.04	0.00	0.15	0.40
-0.50	0.00	0.00	0.06	0.00	0.23	0.06	0.00	0.19	0.46
-0.25	0.00	0.00	0.10	0.00	0.57	0.10	0.00	0.27	0.42
0.00	0.00	0.00	0.20	0.00	0.84	0.12	0.00	0.31	0.45
0.25	0.02	0.00	0.24	0.00	1.00	0.14	0.00	0.38	0.67
0.50	0.05	0.02	0.53	0.04	1.19	0.27	0.01	0.68	0.68
0.75	0.08	0.03	0.95	0.05	1.70	0.51	0.02	1.05	0.71
1.00	0.17	0.05	3.29	0.06	3.90	2.01	0.04	3.37	1.97
1.25	1.00	0.09	11.79	0.27	9.95	10.15	0.33	9.87	9.80
1.50	4.39	2.80	20.83	2.11	16.36	20.50	2.37	17.68	20.92
1.75	13.24	17.31	25.95	13.82	21.33	24.45	13.87	21.97	22.72
2.00	37.80	37.03	25.60	45.91	25.08	25.28	44.06	23.99	24.78
2.25	32.59	28.12	8.80	31.53	13.45	12.58	33.21	14.72	11.95
2.50	8.58	11.31	1.11	5.05	2.96	2.49	4.91	3.40	2.56
2.75	1.67	2.20	0.20	0.85	0.64	0.71	0.64	0.82	0.56
3.00	0.20	0.64	0.04	0.15	0.09	0.19	0.05	0.72	0.17
3.25	0.04	0.09	0.01	0.04	0.01	0.02	0.01	0.01	0.09
3.50	0.03	0.01	0.00	0.02	0.00	0.01	0.00	0.00	0.01
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ROW 3

	cl				c2		c ₃		
Ø	May	Aug.	Nov.	May	Aug.	Nov.	Мау	Aug.	Nov.
-1.00	0.00	0.00	0.00	0.08	0.50	0.00	0.52	0.00	0.00
-0.75	0.02	0.04	0.00	0.20	0.62	0.00	4.07	0.04	0.00
-0.50	0.22	0.16	0.00	1.00	0.71	0.00	5.78	0.06	0.00
-0.25	0.33	0.20	0.00	3.34	0.86	0.00	6.39	0.10	0.07
-0.00	0.43	0.28	0.07	5.27	1.02	0.06	6.40	0.12	0.30
0.25	0.46	0.32	0.08	13.91	1.76	0.06	7.40	0.14	0.44
0.50	0.50	0.54	0.16	22.22	2.67	0.13	7.76	0.17	0.96
0.75	0.71	1.07	0.36	21.39	4.35	0.27	7.00	0.22	2.18
1.00	1.94	3.09	0.76	18.80	7.34	0.86	9.50	0.64	8.88
1.25	6.01	9.45	1.76	8.14	12.89	4.10	12.61	2.21	13.03
1.50	12.69	13.42	3.53	2.21	13.76	9.20	9.60	5.75	15.62
1.75	21.18	18.76	8.95	1.62	14.27	20.37	9.24	13.99	17.98
2.00	29.65	26.09	26.38	0.93	20.39	32.12	8.47	33.49	19.97
2.25	18.79	18.46	36.52	0.37	14.09	23.19	3.88	30.95	13.12
2.50	5.25	5.28	16.29	0.05	3.31	6.54	0.74	8.98	4.67
2.75	1.22	1.77	4.12	0.02	0.82	2.11	0.13	2.36	1.82
3.00	0.16	0.46	0.59	0.00	0.13	0.44	0.02	0.35	0.49
3.25	0.03	0.08	0.05	0.00	0.04	0.05	0.00	0.07	0.07
3.50	0.01	0.04	0.01	0.00	0.02	0.01	0.00	0.04	0.03
3.75	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.02	0.01
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
		c ₄			с ₅			с _б	
-1.00	0.02	0.06	0.00	0.00	0.25	0.00	0.09	0.07	0.00
-0.75	0.10	0.08	0.00	0.10	0.69	0.00	0.13	0.14	0.00
-0.50	0.32	0.16	0.06	0.11	0.75	0.09	0.43	0.19	0.00
-0.25	0.41	0.20	0.10	0.69	0.99	0.31	1.01	0.25	0.00
0.00	0.57	0.22	0.15	2.06	1.27	0.89	2.69	0.30	0.00
0.25	0.60	0.24	0.19	4.19	1.41	1.06	4.45	0.35	0.00
0.50	1.01	0.26	0.37	8.81	1.69	1.83	8.65	0.47	0.01
0.75	1.57	0.28	0.61	13.84	2.27	2.69	15.86	0.79	0.02
1.00	4.24	0.37	0.93	24.38	6.69	5.10	25.17	2.83	0.03
1.25	9.04	0.81	5.52	21.45	9.45	12.79	20.56	14.50	0.21
1.50	12.20	2.47	9.65	8.69	13.00	18.86	8.29	19.72	0.90
1.75	16.60	9.54	15.82	5.87	22.97	22.03	4.92	19.84	5.12
2.00	25.14	31.33	29.87	5.33	22.51	19.72	4.50	22.65	29.63
2.25	21.13	40.63	23.96	3.36	11.87	10.54	2.34	13.45	43.36
2.50	5.60	11.39	8.12	0.80	2.91	2.40	0.41	3.34	15.86
2.75	1.13	1.57	2.73	0.19	0.65	0.87	0.09	0.64	3.95
3.00	0.16	0.12	1.01	0.05	0.14	0.28	0.01	0.06	0.53
3.25	0.04	0.01	0.29	0.01	0.02	0.06	0.00	0.01	0.03
3.50	0.02	0.00	0.15	0.00	0.00	0.02	0.00	0.00	0.01
3.75	0.00	0.00	0.09	0.00	0.00	0.01	0.00	0.00	0.00
4.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00

,

	c ₁ c ₂		c2	c ₃					
ø	<u>May</u>	Aug.	Nov.	May	Aug.	Nov.	Мау	Aug.	Nov.
-1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00
-0.75	0.00	0.00	0.00	0.20	0.10	0.00	0.00	0.00	0.00
-0.50	0.03	0.03	0.00	0.31	0.40	0.00	0.02	0.10	0.00
-0.25	0.25	0.18	0.03	0.48	0.60	0.04	0.23	0.15	0.00
-0.00	0.60	0.30	0.04	0.52	1.09	0.28	0.37	0.19	0.03
0.25	1.83	0.39	0.05	0.54	1.12	0.49	0.40	0.23	0.04
0.50	4.69	0.71	0.07	0.70	1.89	0.90	0.65	0.35	0.06
0.75	8.74	1.21	0.19	0.99	2.48	1.45	0.94	0.41	0.21
1.00	18.42	3.21	0.54	2.65	5.89	4.84	2.49	1.07	1.16
1.25	20.30	8.90	2.32	7.16	11.47	13.63	6.57	3.80	12.34
1.50	14.46	14.83	5.95	12.52	13.68	18.68	12.22	8.26	23.84
1.75	14.40	20.19	14.16	19.55	16.19	22.45	18.49	15.14	23.00
2.00	10.90	28.01	28.07	30.02	21.66	23.75	31.47	31.75	22.57
2.25	4.09	17.46	32.15	19.55	16.61	10.47	20.74	27.33	11.09
2.50	0.65	3.47	12.53	3.67	4.67	1.93	4.15	8.25	3.69
2.75	0.13	0.63	3.21	0.67	1.43	0.51	0.74	2.07	1.20
3.00	0.03	0.09	0.43	0.09	0.24	0.09	0.07	0.40	0.28
3.25	0.01	0.01	0.04	0.04	0.06	0.01	0.01	0.08	0.02
3.50	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.04	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		с ₄			с ₅			с ₆	
-1.00	0.03	0.12	0.00	0.03	0.00	0.00	0.00	0.00	0.00
-0.75	0.17	0.14	0.04	0.10	0.00	0.00	0.00	0.00	0.00
-0.50	0.36	0.16	0.05	0.31	0.00	0.00	0.00	0.00	0.00
-0.25	0.42	0.19	0.08	0.79	0.08	0.00	0.00	0.00	0.00
0.00	0.58	0.22	0.10	0.97	0.10	0.00	0.04	0.00	0.03
0.25	0.79	0.25	0.12	1.04	0.19	0.00	0.05	0.00	0.06
0.50	1.15	0.33	0.23	1.81	0.65	0.00	0.13	0.00	0.06
0.75	2.00	0.59	0.56	2.80	2.58	0.03	0.25	0.01	0.08
1.00	5.58	1.89	2.40	7.10	13.20	0.04	0.86	0.02	0.40
1.25	14.49	5.41	9.02	13.70	22.62	1.04	5.13	0.03	2.45
1.50	17.40	10.40	14.59	14.46	17.73	25.18	12.48	0.28	7.03
1.75	19.07	18.04	20.84	15.61	17.17	47.21	18.60	2.56	15.92
2.00	22.05	33.64	25.69	20.98	15.03	19.47	28.43	22.42	32.75
2.25	12.50	22.87	17.83	14.63	7.68	5.65	24.37	42.46	29.43
2.50	2.51	4.32	5.50	4.00	2.07	0.86	7.06	22.01	8.50
2.75	0.62	0.82	1.92	1.15	0.44	0.13	1.84	8.40	2.34
3.00	0.13	0.12	0.45	0.29	0.02	0.01	0.47	1.46	0.54
3.25	0.03	0.02	0.09	0.07	0.00	0.00	0.11	0.15	0.05
3.50	0.01	0.00	0.02	0.02	0.00	0.00	0.02	0.02	0.02
3.75	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

, •

.

	c _l c		c2	c ₃					
ø	May	Aug.	Nov.	May	Aug.	Nov.	May	Aug.	Nov.
-1.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.05	0.00
-0.75	0.05	0.00	0.03	0.03	0.49	0.00	0.03	0.10	0.00
-0.50	0.36	0.05	0.06	0.10	0.61	0.07	0.17	0.25	0.00
-0.25	0.49	0.12	0.10	0.57	0.73	0.29	0.37	0.31	0.00
-0.00	0.51	0.29	0.30	1.03	0.89	1.00	0.40	0.39	0.00
0.25	0.64	0.39	0.42	1.26	0.98	1.10	0.41	0.41	0.02
0.50	0.92	0.77	0.92	1.63	1.36	1.63	0.62	0.59	0.05
0.75	1.49	1.22	1.75	2.08	1.91	2.36	0.93	0.89	0.19
1.00	4.20	3.10	4.72	4.36	4.60	4.52	2.58	2.24	1.00
1.25	9.09	9.07	9.73	8.29	9.83	9.14	6.42	6.52	5.28
1.50	12.78	14.56	12.01	9.90	12.40	12.47	10.30	11.02	11.39
1.75	17.86	18.84	15.10	16.38	16.22	17.63	15.96	16.82	19.52
2.00	24.55	28.52	24.14	20.78	23.61	27.27	26.92	30.52	32.46
2.25	19.30	17.69	21.83	22.38	18.91	16.95	25.91	22.38	20.90
2.50	5.51	3.89	6.98	8.07	5.26	3.97	6.98	5.48	6.40
2.75	1.56	1.01	1.59	2.28	1.45	1.07	1.45	1.29	2.09
3.00	0.28	0.24	0.21	0.39	0.32	0.18	0.18	0.20	0.29
3.25	0.07	0.07	0.03	0.06	0.06	0.02	0.02	0.06	0.02
3.50	0.02	0.05	0.00	0.01	0.02	0.00	0.00	0.02	0.00
3.75	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.00
4.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		c_4			с ₅			с ₆	
-1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.04	0.04	0.00
-0.75	0.08	0.00	0.00	0.19	0.00	0.00	0.21	0.06	0.00
-0.50	0.24	0.06	0.00	0.32	0.10	0.00.	0.57	0.08	0.00
-0.25	0.31	0.14	0.00	0.40	0.12	0.00	0.93	0.10	0.00
0.00	0.49	0.16	0.11	0.46	0.29	0.00	1.01	0.18	0.00
0.25	0.59	0.20	0.15	0.82	0.38	0.00	1.18	0.20	0.02
0.50	0.94	0.34	0.38	1.29	0.75	0.00	1.71	0.24	0.03
0.75	1.57	0.51	0.72	2.29	1.19	0.01	2.35	0.35	0.08
1.00	5.09	1.38	1.78	5.47	3.40	0.03	5.17	0.83	0.50
1.25	14.46	3.70	3.67	12.72	10.03	0.32	10.61	2.92	3.10
1.50	18.85	6.94	5.92	13.95	16.80	2.65	14.41	7.59	8.48
1.75	21.91	14.97	12.43	16.61	21.87	20.65	17.90	18.48	17.43
2.00	22.15	29.27	29.42	22.81	26.30	37.49	23.21	31.60	34.65
2.25	10.84	29.26	29.15	16.28	14.38	28.28	14.81	27.49	26.52
2.50	1.79	9.44	9.75	4.46	3.25	7.73	4.41	7.34	6.64
2.75	0.35	2.70	4.93	1.23	0.62	2.06	0.83	1.72	1.74
3.00	0.06	0.44	0.96	0.23	0.07	0.35	0.16	0.37	0.39
3.25	0.01	0.07	0.12	0.03	0.01	0.03	0.02	0.03	0.03
3.50	0.00	0.02	0.02	0.01	0.00	0.01	0.01	0.01	0.01
3.75	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TABLE 4 - Grain Size Data -Sieve Analysis (Grams), South Beach.

ROW I

	cl				c ₂	c ₃			
ø	May	Aug.	Nov.	<u>May</u>	Aug.	Nov.	May	Aug.	Nov.
-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00
-0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.61	0.00	0.00
-0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.95	0.00	0.00
0.25	0.00	0.00	0.00	0.00	0.00	0.06	1.14	0.00	0.00
0.50	0.00	0.01	0.02	0.00	0.00	0.19	1.15	0.01	0.01
0.75	0.02	0.08	0.03	0.05	0.02	0.40	2.72	0.04	0.02
1.00	0.02	0.76	0.25	0.08	0.13	1.60	7.56	0.26	0.26
1.25	0.65	5.87	3.43	0.94	3.59	8.78	11.02	6.59	3.49
1.50	6.32	16.94	15.08	7.82	19.93	22.57	14.57	23.90	18.85
1.75	20.41	26.59	26.07	18.84	28.05	27.60	18.85	30.11	29.82
2.00	39.09	28.99	34.88	38.35	29.96	25.59	24.21	26.43	30.62
2.25	26.83	15.84	16.82	26.01	14.52	10.36	13.25	9.86	13.44
2.50	5.46	3.59	2.58	6.45	2.92	1.85	2.49	1.86	2.51
2.75	0.81	0.69	0.33	0.96	0.44	0.46	0.47	0.42	0.44
3.00	0.11	0.14	0.02	0.10	0.05	0.06	0.06	0.09	0.06
3.25	0.02	0.02	0.01	0.04	0.00	0.01	0.01	0.01	0.01
3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		c_4			с ₅			с ₆	
-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
-0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12
-0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14
0.25	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.15
0.50	0.00	0.00	0.02	0.00	0.01	0.03	0.00	0.01	0.22
0.75	0.00	0.02	0.03	0.02	0.02	0.05	0.02	0.01	0.53
l.00	0.02	0.04	0.18	0.07	0.08	0.24	0.06	0.02	3.46
1.25	1.00	1.40	1.62	0.83	9.10	1.85	0.59	0.28	14.05
1.50	19.78	22.78	9.48	11.24	37.52	11.12	4.26	5.35	23.69
1.75	39.67	43.15	26.59	27.12	24.25	30.65	17.10	33.40	24.50
2.00	24.64	26.38	36.63	32.98	19.07	36.33	36.18	42.77	21.36
2.25	11.55	5.00	20.37	20.58	7.93	16.41	28.04	15.55	9.36
2.50	2.28	0.70	4.02	4.63	1.33	2.46	8.30	1.94	1.76
2.75	0.48	0.09	0.67	1.51	0.24	0.34	3.35	0.16	0.27
3.00	0.08	0.01	0.09	0.50	0.03	0.04	1.32	0.08	0.04
3.25	0.01	0.00	0.02	0.08	0.01	0.01	0.29	0.02	0.01
3.50	0.00	0.00	0.00	0.01	0.00	0.00	0.04	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

~

		cl			с ₂			C ₃	
Ø	May	Aug.	Nov.	May	Aug.	Nov.	May	Aug.	Nov.
-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00
-0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.57	0.00	0.00
-0.00	0.03	0.00	0.00	0.28	0.00	0.00	0.91	0.00	0.00
0.25	0.04	0.01	0.00	0.30	0.01	0.02	1.79	0.00	0.00
0.50	0.81	0.06	0.00	0.51	0.26	0.03	2.87	0.02	0.00
0.75	4.33	0.41	0.01	0.74	3.56	0.06	6.77	0.06	0.04
1.00	4.61	10.81	0.07	2.61	52.95	0.34	11.46	0.58	0.18
1.25	6.49	62.94	1.28	7.24	38.09	5.40	12.86	16.59	1.55
1.50	6.60	18.93	8.82	14.40	3.36	20.83	18.64	30.97	8.03
1.75	20.15	4.38	22.68	23.63	0.92	28.94	16.94	20.43	21.62
2.00	36.12	1.65	36.92	31.51	0.32	30.50	16.82	17.45	37.92
2.25	16.49	0.36	25.21	14.39	0.09	11.89	7.99	9.67	24.71
2.50	3.44	0.05	4.12	3.23	0.01	1.50	1.63	2.96	4.82
2.75	0.54	0.00	0.39	0.71	0.00	0.16	0.30	0.72	0.71
3.00	0.03	0.00	0.01	0.07	0.00	0.02	0.02	0.12	0.07
3.25	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.02
3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		c_4			с ₅			с _б	
-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.25	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
0.25	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11
0.50	0.09	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.11
0.75	0.21	0.01	0.02	0.00	0.01	0.00	0.02	0.05	0.28
1.00	1.19	0.09	0.12	0.00	0.12	0.01	0.03	2.64	1.29
1.25	7.73	18.29	1.37	0.09	6.69	0.07	0.24	30.88	7.84
1.50	16.78	58.36	10.38	1.72	26.62	1.27	2.20	33.05	20.04
1.75	25.91	17.80	27.99	18.92	31.27	16.74	15.77	20.93	28.71
2.00	27.91	4.42	38.81	43.68	23.62	41.53	41.72	9.87	27.57
2.25	16.20	0.64	17.95	27.86	9.26	32.55	29.67	1.98	11.43
2.50	3.11	0.05	2.72	5.98	1.62	6.43	7.08	0.09	1.79
2.75	0.57	0.01	0.39	1.19	0.29	0.89	2.08	0.05	0.31
3.00	0.03	0.00	0.05	0.12	0.03	0.11	0.58	0.02	0.03
3.25	0.01	0.00	0.01	0.02	0.01	0.01	0.13	0.01	0.01
3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

ROW 3

		cl			c2			c3	
ø	May	Aug.	Nov.	May	Aug.	Nov.	<u>May</u>	Aug.	Nov.
-1.00	0.00	1.34	0.00	0.00	0.09	0.00	0.00	0.00	0.00
-0.75	0.00	2.02	0.00	0.00	0.43	0.00	0.00	0.10	0.00
-0.50	0.00	5.08	0.00	0.04	0.58	0.00	0.06	0.40	0.00
-0.25	0.00	5.55	0.00	0.42	0.79	0.00	0.61	0.89	0.00
-0.00	0.00	4.20	0.00	0.52	0.90	0.00	0.92	2.35	0.00
0.25	0.02	5,58	0.00	1.00	2.14	0.04	2.22	5.94	0.00
0.50	0.07	5.10	0.00	1.66	4.31	0.04	4.17	11.86	0.00
0.75	0.18	5.85	0.01	2.53	6.50	0.06	6.62	14.20	0.00
1.00	1.11	13.10	0.05	6.72	17.54	0.29	16.19	24.77	0.01
1.25	7.94	20.96	0.63	14.99	28.50	1.52	23.90	26.90	0.63
1.50	22.65	14.29	4.88	22.92	18.83	7.93	18.91	7.50	7.36
1.75	30.56	9.62	16.87	21.49	10.63	27.80	14.95	3.47	27.42
2.00	24.36	5.22	42.25	17.66	5.89	42.78	8.05	0.95	36.52
2.25	9.90	1.74	30.44	7.48	1.99	16.91	2.53	0.21	22.58
2.50	2.41	0.23	4.02	1.80	0.37	1.72	0.49	0.01	4.75
2.75	0.61	0.04	0.38	0.41	0.07	0.43	0.09	0.00	0.51
3.00	0.06	0.01	0.01	0.04	0.01	0.06	0.01	0.00	0.02
3.25	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00
3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		c_4			с ₅			c ₆	
-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-0.50	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00
-0.25	0.04	0.00	0.00	0.00	0.20	0.00	0.09	0.00	0.00
0.00	1.00	0.00	0.00	0.22	0.51	0.00	0.20	0.02	0.01
0.25	1.49	0.06	0.00	0.48	1.39	0.00	0.37	0.02	0.03
0.50	2.79	0.29	0.00	2.10	5.39	0.00	1.11	0.07	0.06
0.75	4.32	0.85	0.01	7.55	12.33	0.01	2.94	0.22	0.12
1.00	9.72	5.34	0.16	30.73	24.40	0.05	14.13	1.53	0.45
1.25	18.90	25.84	1.78	36.54	29.50	0.63	27.06	14.02	4.08
1.50	19.79	33.32	7.99	10.36	15.62	6.32	15.89	34.57	16.29
1.75	22.34	21.91	19.83	5.19	6.85	25.67	13.22	29.63	26.76
2.00	13.40	10.18	39.26	3.27	2.77	40.38	13.22	16.34	32.39
2.25	4.95	1.74	26.41	2.07	0.48	22.97	8.10	2.87	16.36
2.50	0.77	0.16	3.85	0.80	0.06	3.23	2.38	0.18	2.55
2.75	0.12	0.02	0.28	0.28	0.02	0.30	0.70	0.09	0.36
3.00	0.04	0.00	0.02	0.07	0.00	0.02	0.19	0.02	0.04
3.25	0.00	0.00	0.00	0.02	0.00	0.00	0.05	0.01	0.01
3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

•

	cl				c2		c ₃		
ø	May	Aug.	Nov.	<u>May</u>	Aug.	Nov.	May	Aug.	Nov.
-1.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00
-0.75	0.00	0.00	0.00	0.02	0.04	0.00	0.02	0.00	0.00
-0.50	0.04	0.04	0.00	0.18	0.07	0.00	0.21	0.00	0.00
-0.25	0.36	0.06	0.00	0.52	0.08	0.00	0.93	0.05	0.00
-0.00	2.10	0.08	0.00	0.62	0.08	0.00	1.32	0.10	0.00
0.25	2.12	0.08	0.09	0.63	0.29	0.02	1.34	0.17	0.00
0.50	2.60	0.10	0.18	0.81	1.15	0.03	1.59	0.43	0.00
0.75	3.58	0.11	0.77	1.15	5.03	0.11	2.42	0.76	0.00
1.00	6.71	0.21	9.48	3.69	29.65	1.34	7.09	3.05	0.02
1.25	12.41	3.64	43.78	10.47	39.65	30.28	20.38	15.72	0.76
1.50	16.37	26.55	31.45	18.33	12.25	37.01	25.15	28.46	6.92
1.75	19.45	29.06	9.47	22.72	5.72	17.46	19.03	30.02	27.29
2.00	22.75	26.33	3.48	25.05	3.63	9.88	13.95	16.85	42.47
2.25	8.69	11.10	0.79	11.69	1.65	3.09	5.10	3.55	19.93
2.50	1.96	2.04	0.06	2.93	0.20	0.34	0.86	0.39	1.98
2.75	0.49	0.37	0.02	0.71	0.03	0.02	0.17	0.03	0.14
3.00	0.04	0.04	0.00	0.09	0.01	0.00	0.02	0.01	0.01
3.25	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00
3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		c ₄			c5			с _б	
-1.00	0.00	0.22	0.00	0.00	0.00	0.00	0.00	0.16	0.00
-0.75	0.00	0.33	0.00	0.00	0.00	0.00	0.00	0.17	0.00
-0.50	0.00	0.59	0.00	0.00	0.07	0.00	0.05	0.19	0.00
-0.25	0.00	0.61	0.00	0.00	0.10	0.00	0.17	0.20	0.00
0.00	0.06	0.64	0.00	0.02	0.51	0.00	0.30	0.28	0.00
0.25	0.08	1.46	0.00	0.11	0.60	0.00	0.36	0.30	0.00
0.50	0.10	2.21	0.00	0.28	1.19	0.00	2.35	0.43	0.00
0.75	0.32	2.92	0.02	0.73	2.58	0.01	13.01	0.69	0.01
1.00	1.79	7.04	0.07	4.89	9.28	0.03	40.55	3.55	0.01
1.25	12.49	24.40	1.43	24.06	25.46	0.83	11.78	21.51	0.21
1.50	26.41	31.57	18.37	25.02	28.23	12.37	9.25	38.49	4.52
1.75	26.44	19.96	38.63	21.90	19.32	35.53	8.11	25.92	24.60
2.00	22.05	6.50	31.34	14.24	10.03	40.19	6.71	7.03	48.37
2.25	8.24	1.04	8.92	6.47	2.07	10.05	5.04	0.38	20.40
2.50	1.41	0.07	0.78	1.61	0.21	0.65	1.51	0.18	1.47
2.75	0.23	0.01	0.07	0.42	0.02	0.04	0.29	0.03	0.06
3.00	0.03	0.00	0.01	0.05	0.00	0.01	0.07	0.02	0.01
3.25	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.00
3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

.

cl				\mathbf{c}_2			c3		
ø	May	Aug.	Nov.	May	Aug.	Nov.	May	Aug.	Nov.
-1.00	0.02	0.51	0.00	0.00	0.16	0.00	0.00	0.25	0.00
-0.75	0.52	1.16	0.00	0.00	0.38	0.00	0.00	0.57	0.00
-0.50	0.75	1.13	0.00	0.00	0.39	0.00	0.00	0.95	0.00
-0.25	1.14	1.29	0.00	0.00	0.38	0.00	0.04	0.98	0.00
-0.00	1.27	1.38	0.01	0.00	0.46	0.00	0.10	1.04	0.00
0.25	3.45	2.85	0.01	0.00	0.97	0.00	0.14	2.35	0.00
0.50	4.87	4.98	0.02	0.00	1.88	0.00	0.26	3.56	0.00
0.75	4.90	7.65	0.03	0.02	3.61	0.01	0.53	5.60	0.01
1.00	7.70	14.65	0.09	0.25	12.55	0.02	2.56	12.90	0.18
1.25	12.72	22.52	0.54	4.82	29.25	0.45	11.69	26.04	1.63
1.50	16.18	21.52	5.46	20.41	24.47	4.16	20.89	21.88	7.56
1.75	16.91	10.77	20.47	23.29	15.73	19.75	24.43	12.96	19.76
2.00	18.29	6.71	43.45	25.00	6.79	43.48	26.18	7.98	32.90
2.25	8.13	2.22	25.20	22.24	2.22	26.84	10.74	2.09	28.97
2.50	2.00	0.32	3.72	2.99	0.44	4.27	1.65	0.33	7.47
2.75	0.54	0.07	0.52	0.58	0.02	0.51	0.28	0.05	1.10
3.00	0.11	0.01	0.02	0.02	0.01	0.05	0.03	0.01	0.09
3.25	0.02	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01
3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		c ₄			с ₅			с _б	
-1.00	0.00	0.39	0.00	0.00	1.12	0.00	0.00	0.48	0.00
-0.75	0.00	0.76	0.00	0.00	2.02	0.00	0.03	0.84	0.00
-0.50	0.00	0.75	0.00	0.00	2.01	0.00	0.17	1.40	0.00
-0.25	0.07	0.65	0.00	0.00	1.65	0.00	0.23	1.32	0.00
0.00	0.22	0.83	0.00	0.00	1.60	0.00	0.42	1.58	0.00
0.25	0.24	1.45	0.00	0.00	2.81	0.02	0.48	3.00	0.00
0.50	0.54	2.58	0.02	0.01	4.55	0.03	0.71	4.38	0.03
0.75	1.00	4.14	0.02	0.13	7.07	0.06	1.04	5.60	0.06
1.00	4.66	11.96	0.06	1.37	15.87	0.21	3.39	13.10	0.48
1.25	16.83	30.20	0.68	16.44	25.15	2.28	9.73	25.39	3.12
1.50	23.56	24.90	5.10	25.99	18.73	12.44	13.78	21.06	10.74
1.75	25.68	14.95	15.45	25.68	10.09	26.59	22.46	14.73	19.89
2.00	17.52	4.85	34.88	18.05	5.20	35.06	24.42	5.33	34.87
2.25	7.35	1.05	32,35	8.74	1.65	19.28	16.41	1.25	24.91
2.50	1.63	0.08	9.14	2.54	0.10	3.18	4.87	0.15	4.99
2.75	0.40	0.01	1.71	0.72	0.01	0.38	1.33	0.02	0.64
3.00	0.05	0.00	0.19	0.11	0.00	0.02	0.33	0.01	0.03
3.25	0.01	0.00	0.02	0.02	0.00	0.00	0.10	0.00	0.01
3.50	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
3.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

APPENDIX C

Kurtosis South Beach

	cl	c ₂	c ₃	c4	c ₅	c ₆
<u>Row 1</u>						
May Aug. Nov.	1.034 0.974 0.963	1.088 0.913 0.956	1.002 0.938 0.945	1.009 0.997 1.002	1.013 0.936 1.014	1.116 0.965 0.910
<u>Row 2</u>						
May Aug. Nov.	1.383 1.495 0.947	1.065 0.776 0.932	0.941 0.903 1.019	0.974 1.356 1.019	1.051 0.934 1.011	1.096 0.899 0.978
<u>Row 3</u>						
May Aug. Nov.	0.983 0.989 0.998	1.072 1.248 1.072	1.089 1.038 0.949	1.059 0.962 1.006	1.487 1.160 0.969	0.860 0.966 0.942
Row 4						
May Aug. Nov.	1.111 0.860 1.099	1.023 1.393 0.978	1.185 0.944 1.024	0.932 1.367 0.996	0.926 1.009 1.013	1.047 1.040 1.037
Row 5						
May Aug. Nov.	1.068 1.311 1.029	0.783 1.215 0.999	0.913 1.348 1.017	0.994 1.414 1.077	0.935 1.587 0.976	1.038 1.352 0.977

Skewness South Beach

	cl	c ₂	c ₃	с ₄	с ₅	c ₆
Row 1						
May Aug. Nov.	-0.038 -0.057 -0.086	-0.047 -0.007 -0.024	-0.253 0.022 -0.009	0.135 0.052 -0.046	0.035 0.228 -0.030	0.076 0.018 0.011
Row 2	1					
May Aug. Nov.	-0.376 -0.226 -0.095	-0.192 0.146 -0.043	-0.128 0.215 -0.072	-0.088 0.113 -0.057	0.072 0.069 0.042	0.092 0.169 -0.058
Row 3						
May Aug. Nov.	0.010 -0.369 -0.081	-0.067 -0.015 -0.085	-0.016 -0.190 -0.009	-0.119 0.076 -0.127	0.193 -0.012 -0.041	0.239 0.082 -0.069
Row 4						
May Aug. Nov.	-0.263 0.074 0.156	-0.150 0.191 0.211	-0.053 -0.020 -0.052	0.044 -0.137 0.041	0.132 0.033 -0.049	0.507 -0.002 -0.023
<u>Row 5</u>						
May Aug. Nov.	-0.246 -0.185 -0.057	-0.038 0.021 -0.016	-0.063 -0.100 -0.074	-0.001 -0.115 -0.044	0.098 -0.273 -0.058	-0.128 -0.222 -0.118

iil

•••

				Leo bouch	Deach	
	cl	c ₂	c3	c_4	с ₅	с _б
<u>Row 1</u>						
May Aug. Nov.	0.275 0.334 0.297	0.294 0.305 0.337	0.497 0.310 0.296	0.276 0.242 0.283	0.307 0.311 0.272	0.298 0.227 0.365
<u>Row 2</u>						
May Aug. Nov.	0.436 0.204 0.280	0.366 0.169 0.301	0.543 0.361 0.288	0.349 0.203 0.270	0.247 0.306 0.239	0.258 0.289 0.329
Row 3						
May Aug. Nov.	0.327 0.797 0.244	0.448 0.457 0.256	0.472 0.429 0.273	0.467 0.306 0.278	0.352 0.386 0.257	0.463 0.280 0.306
Row 4						
May Aug. Nov.	0.540 0.297 0.248	0.413 0.321 0.292	0.453 0.311 0.250	0.336 0.388 0.255	0.374 0.354 0.236	0.476 0.280 0.223
Row 5						
May Aug. Nov.	0.626 0.557 0.251	0.333 0.399 0.242	0.355 0.496 0.307	0.383 0.423 0.285	0.357 0.617 0.289	0.435 0.536 0.311

Standard Deviation Ø Units South Beach

	Mean Size Ø Units South Beach								
	cl	c2	c ₃	c ₄	c ₅	с _б			
Row 1									
May Aug. Nov.	1.887 1.735 1.776	1.885 1.724 1.640	1.557 1.656 1.718	1.702 1.654 1.829	1.836 1.582 1.788	1.943 1.807 1.575			
Row 2									
May Aug. Nov.	1.701 1.183 1.855	1.707 0.984 1.684	1.383 1.573 1.862	1.712 1.400 1.807	1.925 1.639 1.947	1.950 1.395 1.661			
Row 3									
May Aug. Nov.	1.646 0.806 1.907	1.485 1.159 1.808	1.214 0.831 1.850	1.375 1.393 1.864	1.086 1.044 1.853	1.393 1.518 1.748			
Row 4									
May Aug. Nov.	1.479 1.666 1.246	1.614 1.107 1.402	1.412 1.505 1.830	1.591 1.324 1.697	1.474 1.353 1.747	1.130 1.394 1.847			
Row 5									
May Aug. Nov.	1.360 1.115 1.879	1.752 1.267 1.895	1.622 1.207 1.809	1.524 1.216 1.943	1.575 1.051 1.803	1.690 1.137 1.842			

Kurtosis North Beach

	c _l	c ₂	c ₃	c ₄	c ₅	c ₆
Row 1				۰		
May Aug. Nov.	1.095 0.960 1.097	0.928 1.000 1.032	0.951 1.307 1.091	1.098 0.959 0.992	0.860 1.005 0.894	0.947 0.970 1.005
Row 2						
May Aug. Nov.	1.133 1.034 1.084	0.874 0.913 1.153	0.986 1.204 1.633	1.119 1.048 0.944	1.032 1.102 0.926	1.011 0.983 1.017
Row 3						
May Aug. Nov.	1.111 1.014 1.196	1.085 1.025 1.080	0.813 1.217 0.923	0.998 1.123 1.113	1.311 1.265 1.100	1.314 0.860 1.047
Row 4						
May Aug. Nov.	0.929 0.980 1.130	1.096 1.048 0.953	1.055 1.156 0.926	0.955 1.092 1.009	0.969 0.860 1.164	0.991 1.077 1.148
<u>Row 5</u>						
May Aug. Nov.	1.028 0.985 0.956	1.105 1.111 1.100	1.070 1.092 1.077	0.956 1.184 1.388	0.966 0.972 1.021	1.138 1.075 1.100

Skewness North Beach

	c ^I	c ₂	c ₃	c ₄	c ₅	c ₆
<u>Row 1</u>						
May Aug. Nov.	-0.249 -0.065 -0.081	-0.019 0.186 -0.131	0.006 -0.224 -0.073	-0.026 -0.008 -0.062	-0.269 -0.028 -0.027	-0.118 -0.115 -0.197
Row 2						
May Aug. Nov.	-0.257 -0.051 -0.071	0.171 -0.110 -0.050	-0.016 -0.090 0.408	-0.026 0.070 -0.086	0.050 -0.223 -0.053	0.019 -0.106 -0.102
Row 3						
May Aug. Nov.	-0.154 -0.153 -0.118	-0.008 -0.254 -0.061	-0.170 -0.113 -0.067	-0.264 -0.127 -0.130	0.088 -0.328 -0.149	0.043 -0.048 0.008
Row 4						
May Aug. Nov.	0.065 -0.217 -0.150	-0.270 -0.227 -0.120	-0.241 -0.151 0.055	-0.146 -0.227 -0.085	-0.182 0.110 0.112	-0.113 0.115 -0.091
<u>Row 5</u>						
May Aug. Nov.	-0.217 -0.219 -0.244	-0.287 -0.296 -0.317	-0.243 -0.224 -0.089	-0.116 -0.171 -0.147	-0.197 -0.149 0.064	-0.256 -0.104 -0.086

	Standa	ard Devia	tion Ø Un	its North	Beach	
	cI	c ₂	c ₃	c ₄	с ₅	с _б
			-	-	0	Ũ
<u>Row 1</u>						
Мау	0.556	0.319	0.254	0.245	0.468	0.379
Aug.	0.325	0.295	0.402	0.236	0.296	0.393
Nov.	0.371	0.559	0.413	0.419	0.364	0.417
Bow 2						
ROW 2						
Мау	0.587	0.306	0.283	0.273	0.223	0.225
Aug. Nov.	0.527	0.416	0.312	0.279	0.460	0.416
NOV.	0.201	0.525	0.550	0.339	0.301	0.392
Row 3						
	0 000					
May Aug.	0.396	0.451	0.909	0.473	0.528	0.518
Nov.	0.316	0.349	0.499	0.397	0.476	0.246
Row 4						
May	0.503	0.411	0.391	0.460	0.536	0.373
Aug.	0.405	0.549	0.364	0.370	0.445	0.268
Nov.	0.334	0.412	0.371	0.416	0.243	0.327
Pow 5						
<u>row p</u>						
Мау	0.477	0.549	0.427	0.426	0.505	0.540
Aug. Nov	0.413	0.542	0.413	0.370	0.403	0.338
740 V 0	0.100	0.470	0.000	0.123	0.213	0.328

	ין	ABLE 5 -	GRAIN SIZ	E PARAMET	'ERS	
		Mean Size	Ø Units	North Bea	ch	
	cľ	c ₂	c3	c ₄	c ₅	c ₆
<u>Row l</u>						
May Aug. Nov.	1.353 1.797 1.968	1.593 1.656 1.407	1.898 1.969 1.818	1.857 1.938 1.371	1.680 1.774 1.600	1.720 1.665 1.612
<u>Row 2</u>					-	
May Aug. Nov.	1.313 1.387 2.018	1.407 1.602 1.928	1.805 1.936 1.286	1.951 1.957 1.594	1.948 1.616 1.650	1.949 1.662 1.630
<u>Row 3</u>						
May Aug. Nov.	1.759 1.727 2.045	0.542 1.492 1.853	0.760 1.926 1.587	1.706 2.004 1.853	0.982 1.541 1.543	0.924 1.615 2.077
<u>Row 4</u>						
May Aug. Nov.	1.230 1.700 1.953	1.729 1.611 1.574	1.755 1.878 1.640	1.557 1.795 1.739	1.566 1.430 1.634	1.827 2.156 1.911
Row 5						
May Aug. Nov.	1.702 1.709 1.721	1.714 1.664 1.659	1.795 1.777 1.822	1.555 1.899 1.926	1.623 1.660 1.926	1.602 1.878 1.877

	Č BŸ G C SITY C DEPT	RÉG MCMILLAN, A GRADUATE STUDENT, DEPT. OF GEOGRAPHY, THE UNIVER- OF MANITOBA FROM A PROGRAM WRITTEN BY W.C. ISOPHORDING, OF THE . DF GEOLOGY, THE UNIVERSITY OF SOUTH ALABAMA, MOBILE.
	Č	-PROGRAM LISTING-
 Martin Construction (Construction) Martin Construction (Construction) Martin Construction (Construction) Martin Construction (Construction) 	1 2 3 4	CHARACTER*2 TITLE(12) DIMENSION PHI(2,99),PCT(99),WT(99),DF(4),DEL(99) NREAD=5 NWRIT=6 TPD-0
	6 1000 7 8 1001 9	READ (NREAD, 1001) J,(TITLE(I),I=1,12),PHI(1,1),TOTWT,XMQ IF (J.EQ.0) GO TO 10000 FORMAT (I2,2X,12A2,F7.2,F7.2) JA=J-1
	0 1 1002 3	READ (NREAD,1002) (DEL(N),N=1,J) FORMAT (8F10.2) DD 5 N=2,J PHI(1,N)=PHI(1,N-1)+DEL(N)
tender mit sind dam my star bandet to a	4	CUNTINUE READ (NREAD,1002) (WT(N),N=1,J) I=1 K=1
		WTTOT=0.0 D0 3 N=l,J PCT(N)=100,*(WT(N)/TOTWT) WTTOT=WTTOT+WT(N)
	2 3 4 5	CONTINUE WTDIF=TOTWT-WTTOT PHI(2,1)=PCT(1) DO 4 N=2,J
	6 7 4 8 9 601	PHI(2,N)=PCT(N)+PHI(2,N-1) CONTINUE WRITE (NWRIT,601) (TITLE(I),I=1,12) FORMAT ('1',12A2)
	2 2 3 310	WRITE (NWRIT,417) N=1 IF(PHI(2,J)-84.0)100,310,310 IF(PHI(2,J)-102.0)612,920,920
31 31 31 31 31 31	4 1847 92 0 1848 5 31 9 6 1841 1 1841 1	WRITE (NWRIT,319) FORMAT (" ","**ERROR** SIEVE CONTENTS GREATER THAN TOTAL SAMPLE WE IGHT,SUGGEST YOU CHECK YOUR INPUT DATA.") IRR=IRR+1
38 38 39 30 30 40 40	7	GD TO (1000,70,71,72),IRR WRITE (NWRIT,970) GO TO 1000 WRITE (NWRIT,971)
- 30 - stað - stað bar 2004 - 4 	- Hasal setter falls (d. s. 2 72 3	GD-TD-1000
- 2010 - 11 - 11 - 11 - 12 - 14 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	5 612 5 614 7 615	IF(PHI(2,1)-5.0)613,613,614 PHI5=5.*DEL(N)/PHI(2,1)+PHI(1,N) IF (PHI(2,1)-16.0)9,9,615 PHI(6=16.*DEL(N)/PHI(2,1)+PHI(1,1)
2011 al 1911 a 2014 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	613 6	GO TO 13 IF(PHI(2,N+1)-5.0)6,6,8 N=N+1
54 54	3 - Contra 8 - Contra 19	GU 1U 612 PHI5 =DEL(N)*((5.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) IF(PHI(2,N+1)-16.)11,11,12

	7 17		
6 6 6	1 15 2 16 3 17	GU TU 13 PHI25=DEL(N)*((25.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) IF(PHI(2,N+1)-50.)17,17,18 N=N+1	
6 6 6 6	5 18 5 19 7 20	GO TO 16 PHI50=DEL(N)*((50.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) IF(PHI(2,N+1)-75.)20,20,21 N=N+1	
6 6 7 7	21 22 22	GO TO 19 PHI75=DEL(N)*((75.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) IF(PHI(2,N+1)-84.)23,23,24 N=N	n de la companya de l
1 7 7 7 7	24 25 26	IF(N-JA)22,22,100 PHI84=DEL(N)*(184.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) IF(PHI(2,N+1)-95.)26,26,27 N=N+1	
7	27	IF (N-JA)25,25,625 PH195=DELtN)*((95.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) EMZ=.333*(PHI16+PHI50+PHI84) SIGL= 25*(PHI16+PHI50+PHI84)	e bi lang sa kasala ing bi
8) 	SNAP=.5*((PHI5+PHI95-2.*PHI50)/(PHI95-PHI5)) SNAP=.5*((PHI16+PHI95-2.*PHI50)/(PHI95-PHI5)) SKI=.5*((PHI16+PHI84-2.*PHI50)/(PHI84-PHI16))+SNAP AL2FI=(PHI95+PHI5-2.*PHI50)/(PHI84-PHI16)	
8 8 8	28	CONTINUE EMPHI=.5*(PHI16+PHI84) SIGFI=.5*(PHI84-PHI16)	
8 8 9	701 702	ALFI=(PHI84+PHI16-2.*PHI50)/(PHI84-PHI16) GD TD (701,702),I CAYGI=(PHI16-PHI5+PHI95-PHI84)/(PHI84-PHI16) CONTINUE	·
2	C 29	THIS POINT INDICATES COMPLETION OF FOLK, INMAN. START MOMENTIME)
9		M=1 SETS SWITCH 1 DFF M=2 SETS SWITCH 1 ON M=2	
9 9 9	31	GO TO (320,31), M CONTINUE DO 35 L=1.4	
9	ภัวร		
10 10		CUNTINUE DD 40 N=1, JA $IF_{CPCT(N)} = 40, 40, 41$	
	41 42	CUNTINUE DD 40 N=1,JA IF (PCT(N)) 40,40,41 A=PHI(1,N)5*DEL(N)-XMQ IF (A) 42,40,42 D=A*A E=A*D	
	41 42	CUNTINUE DD 40 N=1, JA IF (PCT(N)) 40,40,41 A=PHI(1,N)5*DEL(N)-XMQ IF (A) 42,40,42 D=A*A E=A*D DF(1)=PCT(N)*A+DF(1) DF(2)=PCT(N)*D+DF(2) DF(3)=PCT(N)*E+DF(3) DF(4)=PCT(N)*E+A+DE(4)	
	41 42 40	CUNTINUE DD 40 N=1, JA IF (PCT(N)) 40,40,41 A=PHI(1;N)5*DEL(N)-XMQ IF (A) 42,40,42 D=A*A E=A*D DF(1)=PCT(N)*A+DF(1) DF(2)=PCT(N)*D+DF(2) DF(3)=PCT(N)*E+DF(3) DF(4)=PCT(N)*E+A+DF(4) CONTINUE DD 45 L=1,4 DF(L)=.01*DF(L)	
	41 42 40	CUNTINUE DO 40 N=1, JA IF (PCT(N)) 40,40,41 A=PHI(1,N)5*DEL(N)-XMQ IF (A) 42,40,42 D=A*A E=A*D DF(1)=PCT(N)*A+DF(1) DF(2)=PCT(N)*E+DF(2) DF(3)=PCT(N)*E+DF(3) DF(4)=PCT(N)*E*A+DF(4) CONTINUE DO 45 L=1,4 DF(L)=.01*DF(L) CDNTINUE XBAR=XMQ+DF(1) B=DF(1)*DF(1) SSQD=DF(2)-B	

: 123	ب ب	THIS CURFERED THE CALCULATION OF MUMENT MEASURE
166	Ċ C	THE FOLLOWING SECTION PROVIDES OUTPUT FORMS AND SELECTS FOLKS
12:	\int_{10}^{10}	TEXTURAL GROUPING TERMS FORMAT (33H CALCULATION OF INMANS STATISTICS)
124	103	FORMAT (32H CALCULATION OF FOLKS STATISTICS)
12	104	FORMAT(41H CALCULATION OF MOMENT MEASURE STATISTICS)
12	106	FORMAT (28H MOMENT MEASURE NOT COMPUTED)
120		FURMAT(48H DATA FUR DRAWING A FREQUENCY DISTRIBUTION CURVE) FURMAT(17H VERY WELL SURTED)
130	, īļi	FORMAT (1X, MODERATELY SORTED')
131	1313	FURMATINEX, MUDERATELY "INVELL" SURTED") - Androwithin induces a second control by the induce billing in the second control by the induced induced induced in the second control by the induced induced induced in the second control by the induced induced induced induced in the second control by the induced indu
13	<u> </u>	FORMAT (14H POORLY SORTED)
13	; 114	FORMATILIAH VERT FUURLY SURTED)
136	121	FORMAT(21H STRONGLY FINE SKEWED)
138	123	FORMAT (17H NEAR SYMMETRICAL)
139	124	FORMAT(14H COARSE SKEWED)
141	131	FORMAT(17H VERY PLATYKURTIC)
142	720	FORMAT (1X, 'KG (INMAN)=', F7.3, 'KURTOSIS VALUE') FORMAT(12H DIATYKIDTIC)
144	133	FORMAT(11H MESOKURTIC)
145 states of second 146	134	FURMAT(12H_LEPTOKURTIC) FORMAT(17H_VERY_LEPTOKURTIC)
147	136	FORMAT (22H EXTREMELY LEPTOKURTIC)
140		FURMALL (H GRAVEL) FURMAT(13H SANDY GRAVEL)
150	143	FORMAT (19H MUDDY SANDY GRAVEL)
151	145	FURMAT (14H GRAVELLY SAND)
153	146	FORMAT (ZOH GRAVELLY MUDDY SAND)
15	148	FORMAT(23H SLIGHTLY GRAVELLY SAND)
156	149	FORMAT (29H SLIGHTLY GRAVELLY MUDDY SAND)
158	151 sa	FORMAT (22H SLIGHTLY GRAVELLY MUD)
159	160	FORMAT (12H CLAYFY SAND)
161	162	FORMAT (11H MUDDY SAND)
162	164	FURMATULIH SILIY SANDJU UTBELANDA SA ANA ANA ANA ANA ANA ANA ANA ANA ANA
164	165	FORMAT (10H SANDY MUD)
166	167	FORMAT (III) SANDT SILTZ FORMAT (5H CLAY) is all to be all address and a statements of a comparison of the second statement of the second
	168	FORMAT (A:4H #MUD) based block was based for a find the block base but to be block and based based and a second FORMAT (A:4H #MUD) based block was based for a find the block based based by the block based based by the based
100	Ç Ç	THIS LIST PROVIDES ALPHA OUTPUT TO BE USED IN THE FOLLOWING
and the second		DECISION NETWORK BASED UPON FOLKS TEXTURAL TRIANGLE DIAGRAMS FOLK-JOUR GEOL VO162- P345-351-JULY1954
169) Ž75	FORMAT (38H DATA IS TOO OPENENDED FOR CALCULATION)
stant production of the		THE FULLUWING PRUCEEDURE NAMES THE SAMPLE ACCURDING TU FOLKS TEXTURAL GROUPING
- Ashedra and a shi 170	277	
172	801	N+L IF(PHI(1,N)+1.) 802,803,804
173	802	GRPCT=GRPCT+PCT(N) TE(N=1)805-806-806
175	805	TETN™JJOUJ∳OUO∲OUD'n Mnenementen ofnisk for street wetnesseere seere seere seere for street of the

£	ĕĭ	чут 9 0 7	Ģ	RPCT	GRPCT+PCT(N)-S	SPCT
1	83 84	808	N= I	=N+1 =(PH	[[],N]-4.)810,8	811,812
	85 86 87	810	SI GC		SPCT+PCT(N) 807 SPCT+PCT(N)	
i	88 89	812	Ğ	TO PCT	809 PCT(N)*(PHI(1)	<u>•N]</u> -4.)/DEL(N)
	91 92	809	51 G[S]) TO IPCT	813 •0.0001	
	93 94 95	813 814	N I I	(N- N+1	1)814,815,815	817-818
i	96 97	816	Ś. G		SIPCT+PCT(N)	0119010
1	98 99 00	817 815		PCT PCT	SIPCT+PCT(N) =0.0001 819	
22	01 02	818	<u> </u>	PĊŤ	PČT(N)*(PHI(1,) SIPCT+PCT(N)-C	•N)-8.)/DEL(N) CLPCT
2	04	822 823	WI F(RITE	(NWRIT,823) [234_POSSIBLE]	MACHINE ERROR)
222	06 07 08	820 215	CI Ci Wr	PCT INTI RITE	CLPCT+PHI(2,J) NUE (NWRIT,417)	
<u>Z</u>	09 10	217	WF I F	RITE FIGR	(NWR 17, 218) CCT-1)250,250,	<mark>₩217</mark>
2	12 13	219	II WF	GR	CT-80.)220,219. (NWRIT,141)	9,219 N
22	14 15 16	220 221		= (GR = (EM	500 PCT-30.1222,221 PCT-SPCT1223,22	21,221 224,224
222	17	224	G U		(NWRIT, 144) 500 CT/EMP(T)-9)2	225-225-226
22	20	225	ŴÎ G	XITE J_TO	(NWR IT, 143) 500	
22	23 24	220	GI) TO 	(NWR11,142) 500 PCT-5.)227,228,	
100000 0000 22 20	25 26 27	228 229	WF		CT-SPCT)230,229 (NWRIT,147)	
22	28	230 231	I F WF		CT/EMPCT)-9.)2: (NWRII,146)	231,231,232 Strate Note Strate St
222	30 31 32	232	GC) TO -(EM	500 CT-SPCT)233,23	34,234
22	33 34 35	233 235	IF WF Cr		CT/EMPCT)-9.)2: (NWRIT,149) 500	235, 235, 236 to superior of the second device of the second se
ŽŽ	36	236	W F	ITE TO	(NWRIT, 148) 500	
222	37 39 40	237	WF		(NWRIT,150) 500	
2	41	238	WF	RITE	(NWR IT, 151)	

	247 248	253	İFİSP	CT-50.)255,256,256 IPCT/CLPCT)-2.)261,261,262
	249	256	WRITE GO TO	
	251	255 259	WRITE	CT-10.)259,260,260 (NWR IT, 167)
	254	260	WRITE	(NWRIT)164) - 2000 - Sakar Marine Referring and the Post of the Sold State Sta
	256	261 264	IF(SP WRITE	CŤ–ŠO.)263,264,264 (NWRIT,162) paragrametric de constructione de la construction de la construction de la construction de la const
an an an Anna Anna an An Anna Anna Anna	258		GOTO	500^{-5}
	261	200		1007 500 1008 17-1651
	263	262	GO TO IF(SP	500 CT-50, 1267, 268, 268
	265	268	WRITE GO TO	
in and the state of the set	268	269	WRITE GO TO	(NWRIT, 169) 500
	270	270	WRITE GD TO	(NWRIT+166) 500
	272	100	WRITE IRR=I	(NWRIT, 275) RR+1 200
	275	200	WRITE K=3	(NWR IT, 276)
	277	300	GO TO WRITE	$\frac{301}{12}$
and an an an an an an an an an an an an an	280	320	K=2	(NWR11,108)
1	282	400		301
	284	625	K=3 I=2	
E. Der talen in ander Sold und Standarführt 1 1 1 1 1 1	285	C contra construction of the contraction	$\begin{array}{c} GU \rightarrow U \\ M = 1 \\ M = 2 \end{array}$	SETS SWITCH 2 OFF
	287	301	M=2 GO TO	(660,661),M
	289	660 661	CONTI GO TO	NUE (302,303,304),K
	292	302	WRITE	(NWRII)/41() (NWRIT,104) (NWRIT,104) YRAP
an Distance and the	294 295		WRITE	(NWRIT,416) SSQD v (NWRIT,401) S understander inderstander interstander and interstand in the standard sector in the sector interstand
Brailt anna 22 an	296	- Martan (1992) - Milandar I	WRITE	* (NWRIT, 403) · SK · · · · · · · · · · · · · · · · ·
gi na sina Panan dalah	299	303	GO TO	(NWRIT, 417) - CHOPENA 600 - Charles a characteristic de la contra de la contra de la contra de la contra de la contra de la contra de CNWRIT, 417) - CHOPENA CONTRA DE LA CONTRA DE
	301 302	200	WRITE	(NWRIT, 103) (NWRIT, 406) EMZ
an an Santa an Anna an Anna ₩ Santa an Anna an Anna Anna Anna Martin an Anna an Anna Anna Anna Anna Anna	303 304 305		WRITE WRITE WRITE	(NWRIT,405) SIGI (NWRIT,403) SKI (NWRIT,404) CAYGP

	311 312 313 314		WR WR WR WR			NWRIT,102) NWRIT,408) EMPHI NWRIT,409) SIGFI NWRIT,403) ALFI
	315 316 317	703	ୁ G ପ WR WR			703,704),I NWRIT,720) CAYGI NWRIT,411) AL2FI
	318 319 320	500 500			INU Def INU	
	321	501	UR WR ÇD		5-4 E (.)502,502,501 NWR IT,114) 20
	325	503 504	WR GD		S-2 E (D 5 S-1	• / 504 / 503 NWR I T, 113) 20 1506 • 505 • 505
Si ka ka ka ka ka	328 329 330	505	ŴR GO IF	ÌŦ T	Ĕ] ES-	NWR IT, 112) 20 • 71)1508,1508,507
B ERLINGUS	331 332 333	507 1508	WR GD IF			NWRIT+111) 20 • 501_508,508,1507
<u></u>	334	1507 508	WR GD IF			NWR IT, 1313) 20 35)510,510,509
	338 339 340	510 520	GO			20 NWR IT + 109) 705 + 540 + I
	341 342 343	705 521	CO IF WR	NT (X LTI	INU 1-3 Ex (É •)522,522,521 NWRIT,136)
	344 345 346	522 523	GU IF WR) - 1 [- 1 [(40 • 5) 524, 524, 523 NWR IT, 135)
	348	524 525	U IF WR] - 1 [- 1 [- 1 [- 1	11)526,526,525 NWRIT,134)
	351 352 353	526 527	IF WR GO		1-1	90)528,528,527 NWR I T,133) 40
fatta da salata da Entresconación fatta	354 355 356	528 529	IF WR GD		 	67)530,530,529 NWRIT,132) 40
	357	530 540		1 T I N T I (((INU SK	NWRIT,131) E +1.]-1.30)542,542,541 and a star a star star and a star a star a star a star a star a star a star a star a star NUS
1	361 362 363	542 543	GOIF	T ((() ()) 6 SK	NWR $17 + 121$ O() +1.)-1.1)544,544,543 NWR $17 + 122$
ng na garang na sang na sang na sang Na manang na sang na sa Na mang na sang	364 365 366	544 545	GO IF WR	- † ((() 1 † 5	ј 6 S К	00 +1.)9)546,546,545 NWRIT,123)
	367 368 369	546 547	GD IF WR) 6 Sk (00 +1.)70)548,548,547 NWRIT,124)
	370		GŪ	T	J 6	$\Omega \Omega$

C = 1.3513 SWITCH 4 UFF C = 2.5ETS SWITCH 4 DN 376 $M \neq 2$	ana an rinn a c
377 378 378 379 WRITE (NWRIT,417) 379 WRITE (NWRIT,1005) 380 1005 FORMAT (**,* PHI *,2X,* SIEVE *,2X,*% SIEVE*,2X,* CUM. % *,/* * *** VALUE *,2X,*WEIGHTS*,2X,*WEIGHTS*,2X,*WEIGHTS*)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
386 401 FORMAT(1X, STANDARD DEVIATION=', F7.3) 387 402 FORMAT(1X, MEAN=', F8.3) 388 403 FORMAT(1X, KURTOSIS=', F7.3) 389 404 FORMAT(1X, KURTOSIS=', F7.3)	
390 405 FURMAT(IX, SURTING=",F6.3) 391 406 FURMAT(IX, MZ=",F6.3, MEAN DIAMETER IN PHI UNITS") 392 408 FURMAT(IX, PHI=",F7.3, MEAN DIAMETER IN PHI UNITS") 393 409 FURMAT(IX, SIGMA PHI=",F6.3, SURTING VALUE") 394 411 FURMAT(IX, ALPHA TWO_PHI=",F6.3)	n an
395 412 FORMAT(* *,F7.2,2X,F7.2,2X,F7.2) 396 415 FORMAT(1X,*THIRD MOMENT =',E12.5,* FOURTH MOMENT =',E12.5) 397 416 FORMAT(1X,*VARIANCE =*,E12.5)	n Anno Anna an Anna Anna Anna Anna A
398 417 FORMAT(1HS) 399 276 FORMAT(49H DATA IS TOO OPENENDED FOR FOLK OR MOMENT MEASURE) 400 970 FORMAT(57H TWO ERRORS,CUT DOWN ON THE COFFEE BREAKS AND GET TO WOR 1K)	
401 971 FORMAT(75H THREE ERRORS, ARE YOU TRYING TO THINK OR IS SOMEONE BURN 1ING AN OLD OVERSHOE)	
	. المم
402 972 FORMAT(34H YUU STUPID CLUD YUU GUUFED AGAIN) 403 10000 WRITE (NWRIT,1006) 404 1006 FORMAT('1') 405 STUP 406 END	11 12 12 12
403 10000 WRITE (NWRIT,1006) 404 1006 FORMAT('1') 405 STOP 406 END \$ENTRY	112 5
403 10000 WRITE (NWRIT, 1006) 404 1006 FORMAT('1') 405 STOP 406 END \$ENTRY	125 5
402 403 404 404 405 405 406 END \$ENTRY	
402 403 404 405 405 406 END SENTRY	
402 403 404 405 405 406 END SENTRY 405 507 507 507 507 507 507 507 5	
10200 VRRITE (124H TUO STUPID CLUD YUU GUDFED AGAIN) 404 1006 405 STOP 406 SENTRY	

C IDM 370 CIMPUTER. THE PRUGRAM AS FULLOWS HAS BEEN SLIGHTLY MODIFIED C BY GREG MCMILLAN, A GRADUATE STUDENT, DEPT. OF GEOGRAPHY, THE UNIVER- C SITY OF MANITOBA FROM A PROGRAM WRITTEN BY W.C. ISOPHORDING, OF THE C DEPT. OF GEOLOGY, THE UNIVERSITY OF SOUTH ALABAMA, MOBILE.
Č -PROGRAM LISTING-
L CHARACTER*2 TITLE(12) 2 DIMENSION PHI(2,99), PCT(99), WT(99), DF(4), DEL(99) 3 NREAD=5
6 1000 READ (NREAD,1001) J,(TITLE(I),1=1,12),PHI(1,1),TOTWT,XMQ 7 IF (J.EQ.0) GD TO 10000 8 1001 FORMAT (I2,2X,12A2,F7.2,F7.2,F7.2)
10 READ (NREAD, 1002) (DEL(N), N=1, J) 11 1002 FDRMAT (8F10.2) 12 DD 5 N=2, J
$\frac{13}{14} = \frac{PHI(1,N) = PHI(1,N-1) + DEL(N)}{CONTINUE}$
$\begin{array}{cccc} 15 & READ (NREAD > 1002) (WT(N) > N=1 > J) \\ 16 & I=1 \\ \end{array}$
$\frac{17}{18} = \frac{1}{10}$
19 DO 3 N=1, J 20 PCT(N)=100.*(WT(N)/TOTWT) 21 W TOT+WTOT+WT/N
$\begin{array}{c} 23 \\ 24 \\ PHI(2,1)=PCT(1) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $
$\frac{26}{27} \qquad PHI(2,N) = PCT(N) + PHI(2,N-1)$
$\begin{array}{ccc} 28 & WRITE (NWRIT,601) (TITLE(I), I=1,12) \\ 29 & 601 & EURMAT (111,1222) \\ \end{array}$
30 WRITE (NWRIT;417)
32 IF(PHI(2,J)-84.0)100,310,310 33 310 IF(PHI(2,1)-84.0)100,310,310
34 920 WRITE (NWRIT, 319) 35 319 EDRMAT (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
*IGHT, SUGGEST YOU CHECK YOUR INPUT DATA. ')
37 999 GO TO (1000,70,71,72), IRR 38 70 WRITE (NWRIT,970)
$\frac{39}{40} = \frac{39}{71} = \frac{31}{10} = \frac{39}{10} = 39$
$\begin{array}{cccc} 41 & & & & & & \\ 42 & 72 & & & & & \\ 42 & 72 & & & & & \\ 42 & & & & & & \\ 42 & & & & & & \\ 42 & & & & & & \\ 42 & & & & & & \\ 43 & & & & & & \\ 44 & & & & & & \\ 45 & & & & & & \\ 46 & & & & & & \\ 47 & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & & & & \\ 48 & & & & &$
$\begin{array}{cccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$
$\frac{47}{48} = \frac{615}{PHI16} = \frac{16.079}{PHI(2,1)} + \frac{25}{PHI(2,1)}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$52 \qquad 60 10 612$
54 9 IF(PHI(2,N+1)-16.)11,11,12

61 15 P 62 16 I 63 17 N	N=N+1 30 T0 13 9HI25=DEL(N)*((25.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) IF(PHI(2,N+1)-50.)17,17,18 N=N+1	an Anna an an an an an an an an an an an an
L 64 G 65 18 P 66 19 I 67 20 N	30 TO 16 PHI50=DEL(N)*((50.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) IF(PHI(2,N+1)-75.)20,20,21 N=N+1	n an an Anna an Anna an Anna an Anna an Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna A
68 G 69 21 P 70 22 I 71 23 N	30 TO 19 HI75=DEL(N)*((75.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) IF(PHI(2,N+1)-84.)23,23,24 N=N+1	n an an Anna an Anna an Anna an Anna Maraonach an Anna an Anna an Anna an Anna an Anna Anna Anna Anna Anna Anna Anna Anna
72 73 24 P 74 25 I 75 26 N	[F(N-JA)22,22,100 PHI84=DEL(N)*((84.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) [F(PHI(2,N+1)-95.)26,26,27 N=N+1	ng tanàna amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin' Na fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'
76 Î 77 27 P 78 E 79 S	<pre>(F(N-JA)25,25,625)HI95=DEL(N)*((95.0-PHI(2,N))/(PHI(2,N+1)-PHI(2,N)))+PHI(1,N) EMZ=.333*(PHI16+PHI50+PHI84) SIGL=_25*(PHI86-PHI16)+_1515*(PHI05-PHI5)</pre>	n an tha an an tha an an an an an tha an an an an an an an an an an an an an
80 81 82 82 83	NAP=.5*((PHI5+PHI95-2.*PHI50)/(PHI95-PHI5)) SKI=.5*((PHI16+PHI84-2.*PHI50)/(PHI84-PHI16))+SNAP L2FI=(PHI95+PHI5-2.*PHI50)/(PHI84-PHI16) CAYCP=_4098*((PHI05-PHI5)/(PHI75-PHI25))	n an an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna a Anna an Anna Anna
84 28 C 85 E 86 S	ONTINUE MPHI=.5*(PHI16+PHI84) SIGFI=.5*(PHI84-PHI16)	nen en br>Research de la constant en en en en en en en en en en en en en
88 <u>G</u>	10 TO (701,702), I	une presente Autoriane en la composición de la composición de la composición de la composición de la composición de la compo
89 701 C 90 702 C	;AYGI=(PHI16-PHI5+PHI95-PHI84)/(PHI84-PHI16) CONTINUE	Р́ 2
T C T G	HIS POINT INDICATES COMPLETION OF FOLK, INMAN. START MOMENTIME	7
92 29 L 93 I C M 94 30 M	UNTINUE F(PHI(2,J)-99.5)300,30,30 1=1 SETS SWITCH 1 OFF 1=2 SETS SWITCH 1 ON 1=2	n an
95 G 96 31 C	GU TO (320,31), M CONTINUE	
97 98 D	10 35 L ≠ 1,4)F(L)=0	an an an an an an an an an an an an an a
99 35 C	ONTINUE	
101 102 103 103 104	F (PCT(N)) 40,40,41 (=PHI(1,N)5*DEL(N)-XMQ F (A) 42,40,42	ana ny kaodim-paositra dia mampika mpikambana amin'ny kaodim-paositra dia mampika mpikambana amin'ny kaodim-pao Ny INSEE dia mampikambana amin'ny kaodim-paositra dia mampikambana amin'ny kaodim-paositra dia mampikambana amin
101 I 102 41 A 103 I 104 42 D 105 E 106 D 107 D	<pre>IF (PCT(N)) 40,40,41 A=PHI(I,N)5*DEL(N)-XMQ F (A) 42,40,42 D=A*A =A*D F(1)=PCT(N)*A+DF(1) F(1)=PCT(N)*D+DF(2)</pre>	an an an an an an an an an an an an an a
101 102 103 104 103 104 105 106 107 108 109 109 109 109 109 109 109 109	<pre>IF (PCT(N)) 40,40,41 =PHI(I,N)5*DEL(N)-XMQ F (A) 42,40,42 =A*A =A*D IF(1)=PCT(N)*A+DF(1) IF(2)=PCT(N)*D+DF(2) IF(2)=PCT(N)*E+DF(3) IF(4)=PCT(N)*E*A+DF(4) IF(4)=PCT(N)*E*A+DF(4) INTINUE ID 45 L=1,4</pre>	
101 I 102 41 A 103 I 104 42 D 105 E 106 D 107 D 108 D 109 D 110 40 111 D 112 D 113 45 115 B	<pre>IF (PCT(N)) 40,40,41 >=PHI(1,N)5*DEL(N) -XMQ F (A) 42,40,42 >=A*A =A*D >F(1) =PCT(N)*A+DF(1) >F(2) = PCT(N)*D+DF(2) >F(2) = PCT(N)*E+DF(3) >F(4) = PCT(N)*E*A+DF(4) ONTINUE O 45 L=1,4 >F(L) = .01*DF(L) ONTINUE BAR=XMQ+DF(1) =DE(L)*DE(1)</pre>	
101 102 41 A 103 1 104 42 D 105 E 106 D 107 D 108 D 109 109 109 109 110 40 C 111 D 12 13 45 C 14 X 15 B 14 S 14 S 14 104 104 105 105 105 106 106 107 108 109 109 109 109 109 109 109 109	<pre>F (PCT(N)) 40,40,41 =PHI(1,N) - 5*DEL(N) -XMQ F (A) 42,40,42 =A*D PF(1) = PCT(N)*A+DF(1) PF(2) = PCT(N)*D+DF(2) PF(2) = PCT(N)*E+DF(3) PF(3) = PCT(N)*E*A+DF(4) ONTINUE O 45 L = 1,4 PF(L) = .01*DF(L) ONTINUE BAR = XMQ+DF(1) = DF(1)*DF(1) SQD = DF(2) - B = SORT (SSDD)</pre>	

122	THIS SUMPLETES THE CALCULATION OF MOMENT MEASURE
e termente de la constancia de la consta	THE FOLLOWING SECTION PROVIDES OUTPUT FORMS AND SELECTS FOLKS
123 102	FORMAT (33H CALCULATION OF INMANS STATISTICS)
124 103 125 104	FORMAT(32H CALCULATION OF FOLKS STATISTICS) FORMAT(41H CALCULATION OF MOMENT MEASURE STATISTICS)
126 105	FORMAT(1X) INSUFFICINET DATA)
128 107	FORMAT (48H DATA FOR DRAWING A FREQUENCY DISTRIBUTION CURVE)
130 111	FORMAT(1X, MODERATELY SORTED)
131 1313	FORMAT(1X, MODERATELY WELL SORTED*) FORMAT(1X, WELL SORTED*)
	FORMAT (14H POÖRLÝ SÓRŤEĎ) SFORMAT (19HSVERY SPOPLY SORTED) STANDARD STANDARD STANDARD SANDARD SANDARD SANDARD SANDARD SANDARD SANDARD SAN
	FORMAT (24H EXTREMELY POORLY SORTED)
137 122	FORMAT(12H FINE SKEWED)
138 123	FURMAL(1/H NEAR SYMMETRICAL) FORMAT(14H COARSE SKEWED)
140 125 141 131	FORMAT(23H STRONGLY COARSE SKEWED)
142 720	FORMAT (1X, KG (INMAN)=", F7.3, KURTOSIS VALUE")
144 133	FORMAT(11H MESOKURTIC)
145 134 146 135	FURMAT(IZH LEPTUKURTIC) FORMAT(17H VERY LEPTOKURTIC)
147 136 148 141	FORMATIZZH EXTREMELY LEPTOKURTIC) Formati 7H Gravel)
149 142 150 142	FÖRMAT (13H SANDY GRAVEL)
151 144	FORMAT (13H MUDDY GRAVEL)
152 145	EURMATIZOH GRAVELLY SAND)
154 147 155 148	FORMAT(13H GRAVELLY MUD) FORMAT(23H SLIGHTLY GRAVELLY SAND)
156 149	FORMAT (29H SLIGHTLY GRAVELLY MUDDY SAND) FORMAT (28H SLIGHTLY GRAVELLY SANDY MUD)
158 151	FORMAT (22H SLIGHTLY GRAVELLY MUD)
160 161	FORMAT(12H CLAYEY SAND)
161 162 162 163	FURMAT(LIH MUDDY SAND) FURMAT(LIH SILTY SAND) () (1993) - State (1993) - Frank (1993) - Frank (1993) - Frank (1993) - Frank (1993) - Fr
163 164 164 165	FORMAT (1)H SANDY CLAY)
165 166	FORMATIIH SANDY SILT) FORMATISH (LAY) AND A SILT
167 168	FORMAT (4H MUD)
100 109	THIS LIST PROVIDES ALPHA OUTPUT TO BE USED IN THE FOLLOWING
<u> </u>	DECISION NETWORK BASED UPON FOLKS TEXTURAL TRIANGLE DIAGRAMS FOLK, JOUR GEOL, VO162, P345-351, JULY1954
169 275 C	FORMAT (38H DATA IS TOO OPENENDED FOR CALCULATION) The following proceedure names the sample according to ediks
170 Č	TEXTURAL GROUPING
171	N=1
173 802	GRPCT = GRPCT + PCT(N)
175 805	1+(N-J)805,806,806 N=N+1

	100 004 181 182 807	SPCI=PCI(N)*(PHI(1,N)+1.)/DEL(N) GPCI=GRPCI+PCI(N)-SPCI	
Maria and Same	182 807 183 808 184	$\frac{1}{N=N+1}$ IF(PHI(1,N)-4.)810,811,812	
L esson	185 810 186 187 811	SPCT=SPCT+PCT(N) GD TD 807 SPCT=SPCT+PCT(N)	
	188 189 812 190	GO TO 809 SIPCT=PCT(N)*(PHI(1,N)-4.)/DEL(N) SPCT=SPCT+PCT(N)-SIPCT	
	191 192 809	GU TU 813 SIPCT=0.0001	
B allenherfahrine	193 013 194 814 195	N=N+1 IF(PHI(1,N)-8.)816,817,818	
	196 816 197 198 817	SIPCT=SIPCT+PCT(N) GO TO 813 SIPCT=SIPCT+PCT(N)	
	199 815 200 201 818	CLPCT=0.0001 G0 T0 819 CLPCT=PCT(N) + (PHI(1.N)-8)/DEL/N)	
Ban in Sinn again (the Child Starty S	202 203 819 204 822	SIPCT=SIPCT+PCT(N)-CLPCT IF(N-J)820,215,822 WDITE (NWD IT	
	205 823 206 820 207 215	FORMAT (23H POSSIBLE MACHINE ERROR) CLPCT=CLPCT+PHI(2,J)-PHI(2,N)	
<u>k insta</u>	208 209	WRITE (NWRIT, 417) WRITE (NWRIT, 218)	
	211 217	FRORPCI=.11250,250,217 $FROCT=SIPCT+CIPCT$	
and the second second	212	IF (GRP CT-80.)220,219,219	
En seneralis	212 213 213 219 214 215 220	IF(GRPCT-80.)220,219,219 6 WRITE (NWRIT,141) 6 GD TD 500 1 IF(GRPCT-30.)222,221,221	
	212 213 214 215 216 216 216 221 217 224 218	IF(GRPCT-80.)220,219,219 G WRITE (NWRIT,141) G GD TD 500 IF(GRPCT-30.)222,221,221 IF(GRPCT-30.)223,224,224 WRITE (NWRIT,144) GD TD 500	
	212 213 219 214 215 220 216 221 217 224 218 219 219 223 220 225	IF(GRPCT-80.)220,219,219 G WRITE (NWRIT,141) G GD TD 500 IF(GRPCT-30.)222,221,221 IF(EMPCT-SPCT)223,224,224 WRITE (NWRIT,144) GD TD 500 IF((SPCT/EMPCT)-9.)225,225,226 WRITE (NWRIT,143) GD TD 500	
	212 213 219 213 219 214 215 220 221 216 221 214 218 223 225 220 225 221 222 226 226 223 224 226	IF (GRPCT-80.)220,219,219 % WRITE (NWRIT,141) % GD TD 500 IF (GRPCT-30.)222,221,221 IF (EMPCT-SPCT)223,224,224 % WRITE (NWRIT,144) % GD TD 500 IF ((SPCT/EMPCT)-9.)225,225,226 WRITE (NWRIT,143) % GD TD 500 % WRITE (NWRIT,142) % GD TD 500 % WRITE (NWRIT,142) % GD TD 500 % WRITE (NWRIT,142) % GD TD 500 % WRITE (NWRIT,223,224,225,225,226) %	
	212 213 219 213 219 214 220 215 220 216 221 217 224 218 220 220 225 221 226 222 226 223 224 224 222 225 228 226 229	IF (GRP CT - 80.) 220, 219, 219 % WRITE (NWRIT, 141) % GO TO 500 IF (GRP CT - 30.) 222, 221, 221 IF (EMP CT - SPC T) 223, 224, 224 WRITE (NWRIT, 144) GO TO 500 IF ((SP CT / EMP CT) - 9.) 225, 225, 226 WRITE (NWRIT, 143) GO TO 500 WRITE (NWRIT, 143) GO TO 500 WRITE (NWRIT, 142) GO TO 500 IF (GRP CT - 5.) 227, 228, 228 IF (EMP CT - SPCT) 230, 229, 229 WRITE (NWRIT, 147)	
	212 213 219 213 219 214 215 220 221 217 224 213 219 223 225 221 226 225 222 226 228 225 228 230 227 228 230 229 231 231	IF (GRP CT - 80.)220,219,219 0 WRITE (NWRIT,141) 0 GD TD 500 IF (GRP CT - 30.)222,221,221 IF (EMP CT - SPCT)223,224,224 WRITE (NWRIT,144) GD TD 500 IF (CSP CT / EMP CT) - 9.)225,225,226 WRITE (NWRIT,143) 0 GD TD 500 IF (CSP CT / EMP CT) - 9.)225,225,226 WRITE (NWRIT,142) 0 GD TD 500 IF (GRP CT - 5.)227,228,228 IF (GRP CT - 5.)227,228,228 IF (EMP CT - SPCT)230,229,229 WRITE (NWRIT,147) GD TD 500 IF (CSP CT / EMP CT) - 9.)231,231,232 WRITE (NWRIT,146)	
	212 213 219 213 219 214 220 215 220 216 221 217 224 218 223 220 225 221 226 223 226 224 222 225 228 226 229 227 231 230 232 231 227	IF(GRPCT-80.)220,219,219 0 WRITE (NWRIT,141) 0 GO TO 500 IF(GRPCT-30.)222,221,221 IF(EMPCT-SPCT)223,224,224 0 WRITE (NWRIT,144) 0 GO TO 500 0 IF((SPCT/EMPCT)-9.)225,225,226 0 WRITE (NWRIT,143) 0 GO TO 500 0 IF((SPCT/EMPCT)-9.)225,225,226 0 WRITE (NWRIT,143) 0 GO TO 500 0 IF(GRPCT-5.)227,228,228 0 IF(GRPCT-5.)227,228,229 0 WRITE (NWRIT,147) 0 GO TO 500 0 IF((SPCT/EMPCT)-9.)231,231,231,232 0 WRITE (NWRIT,147) 0 GO TO 500 0 IF((SPCT/EMPCT)-9.)231,231,232 0 WRITE (NWRIT,146) 0 WRITE (NWRIT,145) 0 IF(EMPCI-SPCI)233,234,234 0	
	212 213 219 213 219 214 220 215 220 217 224 218 220 220 225 221 226 222 226 223 224 224 222 225 228 226 229 227 230 230 232 231 232 232 227 233 233 234 235	IF (GRP CT-80.)220,219,219 G WRITE (NWRIT:141) G IF (GRP CT-30.)222,221,221 IF (GRP CT-30.)222,224,224 IF (GRP CT-30.)222,224,224 WRITE (NWRIT:144) GD TD 500 IF ((SP CT/EMPCT)-9.)225,225,226 WRITE (NWRIT:144) WRITE (NWRIT:143) GD TD 500 IF (GRP CT-5.)227,228,228 IF (GRP CT-5.)227,228,228 IF (EMP CT-SPCT)230,229,229 WRITE (NWRIT:147) G GD TD 500 IF (SP CT/EMP CT)-9.)231,231,232 WRITE (NWRIT:147) G GD TD 500 IF (SP CT/EMP CT)-9.)231,231,232 WRITE (NWRIT:147) G GD TD 500 IF (SP CT/EMP CT)-9.)231,231,232 WRITE (NWRIT:147) G GD TD 500 IF (SP CT/EMP CT)-9.)233,234,234 IF (SP CT/EMP CT)-9.)233,234,234 IF (SP CT/EMP CT)-9.)235,235,235,236 WRITE (NWRIT:149) G GD TD 500 IF (SP CT/EMP CT)-9.)235,235,235,236 WRITE (NWRIT:149) G	
	212 213 219 213 219 214 220 215 220 217 224 218 220 220 225 221 226 222 226 224 222 225 228 226 229 227 230 230 232 231 233 232 227 233 233 234 235 235 236 238 234	IF (GRP CT - 80.) 220, 219, 219 G WRITE (NWRIT, 141) G GO TD 500 IF (GRP CT - 30.) 222, 221, 221 IF (GRP CT - 30.) 222, 224, 224 WRITE (NWRIT, 141) GO TO 500 IF (ISP CT/23, 224, 224 WRITE (NWRIT, 144) GO TO 500 IF (ISP CT/223, 224, 224 WRITE (NWRIT, 143) GO TO 500 WRITE (NWRIT, 143) GO TO 500 IF (GRP CT - 5.) 227, 228, 228 IF (GRP CT - 5.) 227, 228, 229 WRITE (NWRIT, 147) GO TO 500 IF (GRP CT - 5.) 227, 228, 229 WRITE (NWRIT, 147) GO TO 500 IF (GRP CT - 9.) 231, 231, 232 WRITE (NWRIT, 147) GO TO 500 IF (GRP CT / -9.) 231, 231, 232 WRITE (NWRIT, 145) GU TO 500 IF (GRP CT / 203, 234, 234 IF (GRP CT / 203, 234, 234 IF (GRP CT / 203, 234, 234 IF (GRP CT / 203, 235, 235, 236 WRITE (NWRIT, 148) GO TU 500 IF (GRP CT) -9.) 237, 237, 237, 238	
	212 213 219 213 219 214 220 215 220 217 224 218 220 220 225 221 226 222 226 223 226 224 222 225 228 226 229 230 232 231 233 232 231 233 233 234 235 236 236 238 234 239 237 240 238	IF(COPCT-SOL)220,219,219 G WRITE (NWRIT.141) G OT 15 500 IF (COPCT-SOL)222,221,221 IF (COPCT-SOL)222,221,221 IF (COPCT-SOL)223,224,224 WRITE (NWRIT.144) G OD 15 500 IF (COPCT-SOL)223,224,224 WRITE (NWRIT.144) G GD 15 500 IF (COPCT-SOL)223,224,224 WRITE (NWRIT.143) G GD 15 500 IF (COPCT-SOL)223,224,224 WRITE (NWRIT.142) G GD 10 500 IF (COPCT-SOL)223,228,228 WRITE (NWRIT.142) G GD 10 500 IF (COPCT-SOL)230,229,229,229 WRITE (NWRIT.147) G GD 10 500 IF (COPCT-SOL)230,229,229,229 WRITE (NWRIT.147) G GD 10 500 IF (COPCT)233,231,231,232 WRITE (NWRIT.147) G GD 10 500 IF (COPCT)-9,1233,234,234 IF (COPCT)-9,1233,234,234 IF (COPCT)-9,1233,234,234 IF (COPCT)-9,1233,234,234 IF (COPCT)-9,1233,235,235,236 WRITE (NWRIT.148) G GD 10 500 GO 10 500 IF (COPCT)-9,1237,237,238 G WRITE (NWRIT.150)	

	240	202 253	1+((LPU1/S1PCT)+2.)254,253,253 TE(SPCT-50.)255,256,254
	248	254	IF((SIPCT/CLPCT)-2.)261,261,262
	249	256	
	251	255	IF(SPCT-10.)259,260,260
	252	259	WRITE (NWRIT)167) GOTTO 2500/2000/2000/2000/2000/2000/2000/2000
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	254	260	WRITE (NWRIT, 164)
	255	261	GU 1U 500 IF(SPCT-50,)263,264,264
	257	264	WRITE (NWRIT, 162)
	259	263	GU 10 500 IF(SPCT-10,)265,266,266
National and the second second second second second second second second second second second second second se	260	265	WRITE (NWRIT, 168)
ba len <u>a</u> den i	262	266	WRITE (NWRIT,165)
	263	262	GO TU 500 JELSPCT-50, 1267, 268, 268
	265	<u>268</u>	WRITE (NWRIT+163)
	267	267	GU TU 500 IF(SPCT-10,)269,270,270
 March 1997 (1997) States 	268	269	WRITE (NWRIT, 169)
East Landstein	270	270	WRITE (NWRIT,166)
	271	100	GD TD 500 WRITE (NWRIT, 275)
	273	100	IRR+IRR+1
	275	200	GUTU 999 WRITE (NWRIT+276)
\$ 0307075394996550	276		
1	278	300	WRITE (NWRIT,105)
	279	320	WRITE (NWRIT, 106) K=2
<u>.</u>	281		ĜO TO 301
>	283	400	K=1 GD TD 301
建 经行为1000月10日	284	625	
	286	•	ÇO'TO 28
		C	M = 1 SETS SWITCH 2 OFF M = 2 SETS SWITCH 2 ON
	287	301	
-	289	660	CONTINUE
	290 291	661 302	GO TO (302,303,304),K WRITE S(NWRIT.417), STATES STATES STATES STATES STATES AND AND AND AND AND AND AND AND AND AND
	292	n de la de la constante de la constante de la constante de la constante de la constante de la constante de la c	WRITE (NWRIT, 104)
	294		WRITE (NWRIT,402) XBAR WRITE (NWRIT,416) SSQD
an an Staat States	295		
	297		WRITE (NWRIT, 404) CTSIS
	298. 299.	NAMESIA SI SAN	WKITE (NWRIT/415) EM3/EM4 GD/TD/600/control of a strategy of the control of the second control of the second of the second statement of th
ananan tarihin hala	300	303	
	302	1	WRITE (NWRIT, 406) EMZ
	303	an an an an Angelanda. Tagairtí	WRITE (NWRIT, 405) SIGI (1999) AND AND AND AND AND AND AND AND AND AND
	335		WRITE INWRIT, 404) CAYGP

	310	304	WRI	ĮĘ (NWRIT, 417)
i in the state of	312 313		WRI	TE (NWRIT,408) EMPHI NWRIT,409) SIGFI
	314 315		WRI	TE (TO d	NWRIT, 403) ALFI 703-7041. The state of the second state of the se
NOT Have been and the second second second	316	703	WRI	ŢĔŢ	NWRIT, 720) CAYGI
- 1994 - Mariana	318	704	CON	ŢĨŇŲ	
kalast tertidat	320	500	ÇQN	TINU	0 16 1502 - 502 - 501
	322	501	WRI		• 1902, 902, 901 NWR IT, 114)
Mana Ballanah	324 325	502 503	IF() WRI		.)504,504,503 NWRIT,113)
	326 327	504	GO IF()	TD 5 ES-1	20 • 1506• 506• 505
 Contraction of the second secon	328 329	505	WRI GO		$NWRIT \rightarrow 112$
1 1214-01-024	330	506 507	ĪF	(ES-	71)1508,1508,507
Brite in datable on her striker.	332	1508	ĢÔ	to s	$\frac{20}{501}$ 508-508-1507
	334	1507	WRI	ŢĒ (NWRIT,1313)
	336 337	508 509	IF() WRI		35)510,510,509 NWRIT,110)
	338 339	510	GO 1 WRI	ro 5 re (20 NWRIT-109)
	340 341	520 705	GD 1 CON	TD (TINU	705,540), I
	342 343	521	IF() WRI	(1-3 [F]	•)522,522,521 ₩RIT•136)
Manal Parking of London London	344 345	522	GO	10 5 (1-1	40 • 5) 52 4 • 52 4 • 52 3
	346	523	WRI	rë i ross	
tik eksen in 1995 de fan de	348	524 525	IF() WRI	k1-1	• 11) 526, 520, 525 WR II 134
	350	526	GO 1	ŗā s	
Kadada ini dali dali dali	352	527	WRI		NWRIT/133)
 A sector state 	354	528	IF()	(<u>1</u> -;	67)530,530,529
Sector all and Cliffers.	356	530	GOTI		
3 14 T-	358	540	ÇÛN	INU	
Martin Constanting Second	360	541	WRI		NWRIT, 121)
	362	542		ESK	+1.)-1.1)544,544,543
En Same Sin	364	973 644	ĢD 1		$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
	366	545	WRII		T1. J-, 9/240,240,242 NWRIT,123)
És dan sa Kara	368 368	546	50 IF((No 1	ESK	00 +1.)70)548,548,547
	370	27 7 570			
A	3/1	240	MK I	112	(NWK11/1/2)

ġ

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
377 378 378 379 379 380 1005 FORMAT ('',' PHI ',2X,' SIEVE ',2X,' CUM. % ',/' ' *, 'VALUE ',2X,'WEIGHTS',2X,'WEIGHTS',2X,'WEIGHTS')
381 DD 650 N=1,J 382 WRITE (NWRIT,412) PHI(1,N),WT(N),PCT(N),PHI(2,N) 383 650 CUNTINUE 384 700 GD TJ 1000 384 700 GD TJ 1000
386 401 FORMAT(1X, 'STANDARD DEVIATION=', F7.3) 387 402 FORMAT(1X, 'MEAN=', F8.3) 388 403 FORMAT(1X, 'SKEWNESS=', F7.3) 389 404 FORMAT(1X, 'KUNETOSIS=', F7.3)
390 405 FURMAT(IX, 'SURTING=', F6.3) 391 406 FURMAT(IX, 'MZ=', F6.3, 'MEAN DIAMETER IN PHI UNITS') 392 408 FURMAT(IX, 'PHI=', F7.3, 'MEAN DIAMETER IN PHI UNITS') 393 409 FURMAT(IX, 'SIGMA PHI=', F6.3, 'SURTING VALUE') 394 411 FURMAT(IX, 'ALPHA THO PHI=', F6.3)
395 412 FORMAT(1, F7.2,2X,F7.2,2X,F7.2) 396 415 FORMAT(1X, THIRD MOMENT = F12.5, FOURTH MOMENT = FE12.5) 397 416 FORMAT(1X, VARIANCE = FE12.5) 398 417 FORMAT(1HS)
399 276 FORMAT(49H DATA IS TOO OPENENDED FOR FOLK OR MOMENT MEASURE) 400 970 FORMAT(57H TWO ERRORS,CUT DOWN ON THE COFFEE BREAKS AND GET TO WOR 1K)
401 971 FORMAT(75H THREE ERRORS, ARE YOU TRYING TO THINK OR IS SOMEONE BURN 1 ING AN OLD OVERSHOE)
$\frac{402}{403} \frac{972}{10000} \text{ WRITE (NWRIT, 1006)} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$
402 972 FORMAT(34H YOU STOPID CLUD YOU GOUFED AGAIN) 403 ΙΟΟΟΟ WRITE (NWRIT,1006) 404 ΙΟΟ6 FORMAT(*1*) 405 STOP 406 END
402 972 FURMAT(34H YOU STOPID CLUD YOU GOUFED AGAIN) 403 1006 FURMAT(*1*) 404 1006 FURMAT(*1*) 405 STOP 406 END \$ENTRY
402 972 FURMAT(344 TO STOPTO CLUD YOU GOUFED AGAIN) 403 IOOOO WRITE (NWRIT+1006) 404 IOO6 FURMAT(*1*) 405 STOP 406 END \$ENTRY
402 403 404 405 405 406 END ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
402 FORMAT (34H TOU STOPED CLUD YOU GUUPED AGAIN) W 403 1006 FORMAT (*1*) N 404 1006 FORMAT (*1*) N 405 STOP N N
403 10000 FURRIT 100 STOPID CLUD YDD GDDFED AGAIN) W 404 1006 FORMAT(*1*) N 405 STOP SENTRY
YO2 YO2 YO2 YOU SUPPLY YOU GUPED AGAIN) W 404 1006 FORMAT(11) YOU GUPED AGAIN) W 405 STOP SENTRY W

•